| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version | ||
| Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20299 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3933 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 ‘cfv 6487 Basecbs 17126 Unitcui 20279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-dvdsr 20281 df-unit 20282 |
| This theorem is referenced by: unitgrpbas 20306 unitgrpid 20309 unitsubm 20310 dvrdir 20336 rdivmuldivd 20337 invrpropd 20342 elrhmunit 20431 rhmunitinv 20432 fidomndrng 20694 issubdrg 20701 imadrhmcl 20718 znunithash 21507 dvrcn 24105 nmdvr 24591 nrginvrcnlem 24612 nrginvrcn 24613 dchrelbasd 27183 dchrinvcl 27197 dchrghm 27200 dchr1 27201 dchreq 27202 dchrresb 27203 dchrabs 27204 dchrinv 27205 dchrptlem1 27208 dchrptlem2 27209 dchrpt 27211 dchrsum2 27212 dchrsum 27213 sum2dchr 27218 lgsdchr 27299 rpvmasum2 27456 dvrcan5 33210 isdrng4 33268 dvdsruassoi 33356 lidlunitel 33395 assafld 33657 unitscyglem5 42298 aks5lem7 42299 idomodle 43289 |
| Copyright terms: Public domain | W3C validator |