| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version | ||
| Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20284 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3950 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 Unitcui 20264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-dvdsr 20266 df-unit 20267 |
| This theorem is referenced by: unitgrpbas 20291 unitgrpid 20294 unitsubm 20295 dvrdir 20321 rdivmuldivd 20322 invrpropd 20327 elrhmunit 20419 rhmunitinv 20420 fidomndrng 20682 issubdrg 20689 imadrhmcl 20706 znunithash 21474 dvrcn 24071 nmdvr 24558 nrginvrcnlem 24579 nrginvrcn 24580 dchrelbasd 27150 dchrinvcl 27164 dchrghm 27167 dchr1 27168 dchreq 27169 dchrresb 27170 dchrabs 27171 dchrinv 27172 dchrptlem1 27175 dchrptlem2 27176 dchrpt 27178 dchrsum2 27179 dchrsum 27180 sum2dchr 27185 lgsdchr 27266 rpvmasum2 27423 dvrcan5 33187 isdrng4 33245 dvdsruassoi 33355 lidlunitel 33394 assafld 33633 unitscyglem5 42187 aks5lem7 42188 idomodle 43180 |
| Copyright terms: Public domain | W3C validator |