| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version | ||
| Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20333 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3962 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 ‘cfv 6530 Basecbs 17226 Unitcui 20313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-dvdsr 20315 df-unit 20316 |
| This theorem is referenced by: unitgrpbas 20340 unitgrpid 20343 unitsubm 20344 dvrdir 20370 rdivmuldivd 20371 invrpropd 20376 elrhmunit 20468 rhmunitinv 20469 fidomndrng 20731 issubdrg 20738 imadrhmcl 20755 znunithash 21523 dvrcn 24120 nmdvr 24607 nrginvrcnlem 24628 nrginvrcn 24629 dchrelbasd 27200 dchrinvcl 27214 dchrghm 27217 dchr1 27218 dchreq 27219 dchrresb 27220 dchrabs 27221 dchrinv 27222 dchrptlem1 27225 dchrptlem2 27226 dchrpt 27228 dchrsum2 27229 dchrsum 27230 sum2dchr 27235 lgsdchr 27316 rpvmasum2 27473 dvrcan5 33177 isdrng4 33235 dvdsruassoi 33345 lidlunitel 33384 assafld 33623 unitscyglem5 42158 aks5lem7 42159 idomodle 43162 |
| Copyright terms: Public domain | W3C validator |