Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version |
Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitss | ⊢ 𝑈 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | unitcl 19901 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3925 | 1 ⊢ 𝑈 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 ‘cfv 6433 Basecbs 16912 Unitcui 19881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-dvdsr 19883 df-unit 19884 |
This theorem is referenced by: unitgrpbas 19908 unitgrpid 19911 unitsubm 19912 invrpropd 19940 issubdrg 20049 fidomndrng 20579 znunithash 20772 dvrcn 23335 nmdvr 23834 nrginvrcnlem 23855 nrginvrcn 23856 dchrelbasd 26387 dchrinvcl 26401 dchrghm 26404 dchr1 26405 dchreq 26406 dchrresb 26407 dchrabs 26408 dchrinv 26409 dchrptlem1 26412 dchrptlem2 26413 dchrpt 26415 dchrsum2 26416 dchrsum 26417 sum2dchr 26422 lgsdchr 26503 rpvmasum2 26660 dvrdir 31487 rdivmuldivd 31488 dvrcan5 31490 elrhmunit 31519 rhmunitinv 31521 idomodle 41021 |
Copyright terms: Public domain | W3C validator |