![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version |
Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitss | ⊢ 𝑈 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | unitcl 20391 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3998 | 1 ⊢ 𝑈 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ⊆ wss 3962 ‘cfv 6562 Basecbs 17244 Unitcui 20371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-dvdsr 20373 df-unit 20374 |
This theorem is referenced by: unitgrpbas 20398 unitgrpid 20401 unitsubm 20402 dvrdir 20428 rdivmuldivd 20429 invrpropd 20434 elrhmunit 20526 rhmunitinv 20527 fidomndrng 20790 issubdrg 20797 imadrhmcl 20814 znunithash 21600 dvrcn 24207 nmdvr 24706 nrginvrcnlem 24727 nrginvrcn 24728 dchrelbasd 27297 dchrinvcl 27311 dchrghm 27314 dchr1 27315 dchreq 27316 dchrresb 27317 dchrabs 27318 dchrinv 27319 dchrptlem1 27322 dchrptlem2 27323 dchrpt 27325 dchrsum2 27326 dchrsum 27327 sum2dchr 27332 lgsdchr 27413 rpvmasum2 27570 dvrcan5 33225 isdrng4 33278 dvdsruassoi 33391 lidlunitel 33430 assafld 33664 unitscyglem5 42180 aks5lem7 42181 idomodle 43179 |
Copyright terms: Public domain | W3C validator |