![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version |
Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitss | ⊢ 𝑈 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | unitcl 19144 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3864 | 1 ⊢ 𝑈 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ⊆ wss 3831 ‘cfv 6193 Basecbs 16345 Unitcui 19124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-ov 6985 df-dvdsr 19126 df-unit 19127 |
This theorem is referenced by: unitgrpbas 19151 unitgrpid 19154 unitsubm 19155 invrpropd 19183 issubdrg 19295 fidomndrng 19813 znunithash 20428 dvrcn 22510 nmdvr 22997 nrginvrcnlem 23018 nrginvrcn 23019 dchrelbasd 25532 dchrinvcl 25546 dchrghm 25549 dchr1 25550 dchreq 25551 dchrresb 25552 dchrabs 25553 dchrinv 25554 dchrptlem1 25557 dchrptlem2 25558 dchrpt 25560 dchrsum2 25561 dchrsum 25562 sum2dchr 25567 lgsdchr 25648 rpvmasum2 25805 dvrdir 30572 rdivmuldivd 30573 dvrcan5 30575 elrhmunit 30604 rhmunitinv 30606 idomodle 39233 |
Copyright terms: Public domain | W3C validator |