| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitss | Structured version Visualization version GIF version | ||
| Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | unitcl.2 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20290 | . 2 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3952 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3916 ‘cfv 6513 Basecbs 17185 Unitcui 20270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-dvdsr 20272 df-unit 20273 |
| This theorem is referenced by: unitgrpbas 20297 unitgrpid 20300 unitsubm 20301 dvrdir 20327 rdivmuldivd 20328 invrpropd 20333 elrhmunit 20425 rhmunitinv 20426 fidomndrng 20688 issubdrg 20695 imadrhmcl 20712 znunithash 21480 dvrcn 24077 nmdvr 24564 nrginvrcnlem 24585 nrginvrcn 24586 dchrelbasd 27156 dchrinvcl 27170 dchrghm 27173 dchr1 27174 dchreq 27175 dchrresb 27176 dchrabs 27177 dchrinv 27178 dchrptlem1 27181 dchrptlem2 27182 dchrpt 27184 dchrsum2 27185 dchrsum 27186 sum2dchr 27191 lgsdchr 27272 rpvmasum2 27429 dvrcan5 33193 isdrng4 33251 dvdsruassoi 33361 lidlunitel 33400 assafld 33639 unitscyglem5 42182 aks5lem7 42183 idomodle 43173 |
| Copyright terms: Public domain | W3C validator |