| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringunitnzdiv | Structured version Visualization version GIF version | ||
| Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| ringunitnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringunitnzdiv.z | ⊢ 0 = (0g‘𝑅) |
| ringunitnzdiv.t | ⊢ · = (.r‘𝑅) |
| ringunitnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringunitnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringunitnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) |
| Ref | Expression |
|---|---|
| ringunitnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringunitnzdiv.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringunitnzdiv.t | . 2 ⊢ · = (.r‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | ringunitnzdiv.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 5 | ringunitnzdiv.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | ringunitnzdiv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 8 | 1, 7 | unitcl 20279 | . . 3 ⊢ (𝑋 ∈ (Unit‘𝑅) → 𝑋 ∈ 𝐵) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | eqid 2729 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 11 | 7, 10, 1 | ringinvcl 20296 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑋) ∈ 𝐵) |
| 12 | 5, 6, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑋) ∈ 𝐵) |
| 13 | oveq1 7360 | . . . . 5 ⊢ (𝑒 = ((invr‘𝑅)‘𝑋) → (𝑒 · 𝑋) = (((invr‘𝑅)‘𝑋) · 𝑋)) | |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ (𝑒 = ((invr‘𝑅)‘𝑋) → ((𝑒 · 𝑋) = (1r‘𝑅) ↔ (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅))) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑒 = ((invr‘𝑅)‘𝑋)) → ((𝑒 · 𝑋) = (1r‘𝑅) ↔ (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅))) |
| 16 | 7, 10, 2, 3 | unitlinv 20297 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅)) |
| 17 | 5, 6, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅)) |
| 18 | 12, 15, 17 | rspcedvd 3581 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 (𝑒 · 𝑋) = (1r‘𝑅)) |
| 19 | ringunitnzdiv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 1, 2, 3, 4, 5, 9, 18, 19 | ringinvnzdiv 20205 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 .rcmulr 17181 0gc0g 17362 1rcur 20085 Ringcrg 20137 Unitcui 20259 invrcinvr 20291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 |
| This theorem is referenced by: ring1nzdiv 20303 |
| Copyright terms: Public domain | W3C validator |