![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringunitnzdiv | Structured version Visualization version GIF version |
Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
Ref | Expression |
---|---|
ringunitnzdiv.b | β’ π΅ = (Baseβπ ) |
ringunitnzdiv.z | β’ 0 = (0gβπ ) |
ringunitnzdiv.t | β’ Β· = (.rβπ ) |
ringunitnzdiv.r | β’ (π β π β Ring) |
ringunitnzdiv.y | β’ (π β π β π΅) |
ringunitnzdiv.x | β’ (π β π β (Unitβπ )) |
Ref | Expression |
---|---|
ringunitnzdiv | β’ (π β ((π Β· π) = 0 β π = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringunitnzdiv.b | . 2 β’ π΅ = (Baseβπ ) | |
2 | ringunitnzdiv.t | . 2 β’ Β· = (.rβπ ) | |
3 | eqid 2725 | . 2 β’ (1rβπ ) = (1rβπ ) | |
4 | ringunitnzdiv.z | . 2 β’ 0 = (0gβπ ) | |
5 | ringunitnzdiv.r | . 2 β’ (π β π β Ring) | |
6 | ringunitnzdiv.x | . . 3 β’ (π β π β (Unitβπ )) | |
7 | eqid 2725 | . . . 4 β’ (Unitβπ ) = (Unitβπ ) | |
8 | 1, 7 | unitcl 20313 | . . 3 β’ (π β (Unitβπ ) β π β π΅) |
9 | 6, 8 | syl 17 | . 2 β’ (π β π β π΅) |
10 | eqid 2725 | . . . . 5 β’ (invrβπ ) = (invrβπ ) | |
11 | 7, 10, 1 | ringinvcl 20330 | . . . 4 β’ ((π β Ring β§ π β (Unitβπ )) β ((invrβπ )βπ) β π΅) |
12 | 5, 6, 11 | syl2anc 582 | . . 3 β’ (π β ((invrβπ )βπ) β π΅) |
13 | oveq1 7420 | . . . . 5 β’ (π = ((invrβπ )βπ) β (π Β· π) = (((invrβπ )βπ) Β· π)) | |
14 | 13 | eqeq1d 2727 | . . . 4 β’ (π = ((invrβπ )βπ) β ((π Β· π) = (1rβπ ) β (((invrβπ )βπ) Β· π) = (1rβπ ))) |
15 | 14 | adantl 480 | . . 3 β’ ((π β§ π = ((invrβπ )βπ)) β ((π Β· π) = (1rβπ ) β (((invrβπ )βπ) Β· π) = (1rβπ ))) |
16 | 7, 10, 2, 3 | unitlinv 20331 | . . . 4 β’ ((π β Ring β§ π β (Unitβπ )) β (((invrβπ )βπ) Β· π) = (1rβπ )) |
17 | 5, 6, 16 | syl2anc 582 | . . 3 β’ (π β (((invrβπ )βπ) Β· π) = (1rβπ )) |
18 | 12, 15, 17 | rspcedvd 3605 | . 2 β’ (π β βπ β π΅ (π Β· π) = (1rβπ )) |
19 | ringunitnzdiv.y | . 2 β’ (π β π β π΅) | |
20 | 1, 2, 3, 4, 5, 9, 18, 19 | ringinvnzdiv 20236 | 1 β’ (π β ((π Β· π) = 0 β π = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βcfv 6543 (class class class)co 7413 Basecbs 17174 .rcmulr 17228 0gc0g 17415 1rcur 20120 Ringcrg 20172 Unitcui 20293 invrcinvr 20325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-minusg 18893 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 |
This theorem is referenced by: ring1nzdiv 20337 |
Copyright terms: Public domain | W3C validator |