| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringunitnzdiv | Structured version Visualization version GIF version | ||
| Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| ringunitnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringunitnzdiv.z | ⊢ 0 = (0g‘𝑅) |
| ringunitnzdiv.t | ⊢ · = (.r‘𝑅) |
| ringunitnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringunitnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringunitnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) |
| Ref | Expression |
|---|---|
| ringunitnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringunitnzdiv.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringunitnzdiv.t | . 2 ⊢ · = (.r‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | ringunitnzdiv.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 5 | ringunitnzdiv.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | ringunitnzdiv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 8 | 1, 7 | unitcl 20284 | . . 3 ⊢ (𝑋 ∈ (Unit‘𝑅) → 𝑋 ∈ 𝐵) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | eqid 2729 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 11 | 7, 10, 1 | ringinvcl 20301 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑋) ∈ 𝐵) |
| 12 | 5, 6, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑋) ∈ 𝐵) |
| 13 | oveq1 7394 | . . . . 5 ⊢ (𝑒 = ((invr‘𝑅)‘𝑋) → (𝑒 · 𝑋) = (((invr‘𝑅)‘𝑋) · 𝑋)) | |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ (𝑒 = ((invr‘𝑅)‘𝑋) → ((𝑒 · 𝑋) = (1r‘𝑅) ↔ (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅))) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑒 = ((invr‘𝑅)‘𝑋)) → ((𝑒 · 𝑋) = (1r‘𝑅) ↔ (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅))) |
| 16 | 7, 10, 2, 3 | unitlinv 20302 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅)) |
| 17 | 5, 6, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅)) |
| 18 | 12, 15, 17 | rspcedvd 3590 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 (𝑒 · 𝑋) = (1r‘𝑅)) |
| 19 | ringunitnzdiv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | 1, 2, 3, 4, 5, 9, 18, 19 | ringinvnzdiv 20210 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 1rcur 20090 Ringcrg 20142 Unitcui 20264 invrcinvr 20296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 |
| This theorem is referenced by: ring1nzdiv 20308 |
| Copyright terms: Public domain | W3C validator |