MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringunitnzdiv Structured version   Visualization version   GIF version

Theorem ringunitnzdiv 20415
Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
ringunitnzdiv.b 𝐵 = (Base‘𝑅)
ringunitnzdiv.z 0 = (0g𝑅)
ringunitnzdiv.t · = (.r𝑅)
ringunitnzdiv.r (𝜑𝑅 ∈ Ring)
ringunitnzdiv.y (𝜑𝑌𝐵)
ringunitnzdiv.x (𝜑𝑋 ∈ (Unit‘𝑅))
Assertion
Ref Expression
ringunitnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem ringunitnzdiv
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ringunitnzdiv.b . 2 𝐵 = (Base‘𝑅)
2 ringunitnzdiv.t . 2 · = (.r𝑅)
3 eqid 2735 . 2 (1r𝑅) = (1r𝑅)
4 ringunitnzdiv.z . 2 0 = (0g𝑅)
5 ringunitnzdiv.r . 2 (𝜑𝑅 ∈ Ring)
6 ringunitnzdiv.x . . 3 (𝜑𝑋 ∈ (Unit‘𝑅))
7 eqid 2735 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
81, 7unitcl 20392 . . 3 (𝑋 ∈ (Unit‘𝑅) → 𝑋𝐵)
96, 8syl 17 . 2 (𝜑𝑋𝐵)
10 eqid 2735 . . . . 5 (invr𝑅) = (invr𝑅)
117, 10, 1ringinvcl 20409 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑋) ∈ 𝐵)
125, 6, 11syl2anc 584 . . 3 (𝜑 → ((invr𝑅)‘𝑋) ∈ 𝐵)
13 oveq1 7438 . . . . 5 (𝑒 = ((invr𝑅)‘𝑋) → (𝑒 · 𝑋) = (((invr𝑅)‘𝑋) · 𝑋))
1413eqeq1d 2737 . . . 4 (𝑒 = ((invr𝑅)‘𝑋) → ((𝑒 · 𝑋) = (1r𝑅) ↔ (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅)))
1514adantl 481 . . 3 ((𝜑𝑒 = ((invr𝑅)‘𝑋)) → ((𝑒 · 𝑋) = (1r𝑅) ↔ (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅)))
167, 10, 2, 3unitlinv 20410 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
175, 6, 16syl2anc 584 . . 3 (𝜑 → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
1812, 15, 17rspcedvd 3624 . 2 (𝜑 → ∃𝑒𝐵 (𝑒 · 𝑋) = (1r𝑅))
19 ringunitnzdiv.y . 2 (𝜑𝑌𝐵)
201, 2, 3, 4, 5, 9, 18, 19ringinvnzdiv 20315 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  0gc0g 17486  1rcur 20199  Ringcrg 20251  Unitcui 20372  invrcinvr 20404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405
This theorem is referenced by:  ring1nzdiv  20416
  Copyright terms: Public domain W3C validator