![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringinvcl | Structured version Visualization version GIF version |
Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
unitinvcl.1 | β’ π = (Unitβπ ) |
unitinvcl.2 | β’ πΌ = (invrβπ ) |
ringinvcl.3 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
ringinvcl | β’ ((π β Ring β§ π β π) β (πΌβπ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | . . 3 β’ π = (Unitβπ ) | |
2 | unitinvcl.2 | . . 3 β’ πΌ = (invrβπ ) | |
3 | 1, 2 | unitinvcl 20281 | . 2 β’ ((π β Ring β§ π β π) β (πΌβπ) β π) |
4 | ringinvcl.3 | . . 3 β’ π΅ = (Baseβπ ) | |
5 | 4, 1 | unitcl 20266 | . 2 β’ ((πΌβπ) β π β (πΌβπ) β π΅) |
6 | 3, 5 | syl 17 | 1 β’ ((π β Ring β§ π β π) β (πΌβπ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6533 Basecbs 17142 Ringcrg 20127 Unitcui 20246 invrcinvr 20278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-0g 17385 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-grp 18855 df-minusg 18856 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 |
This theorem is referenced by: 1rinv 20286 0unit 20287 ringunitnzdiv 20289 dvrcl 20295 dvrass 20299 dvrcan1 20300 ringinvdv 20305 subrguss 20478 subrginv 20479 subrgunit 20481 drnginvrcl 20598 issubdrg 20620 unitrrg 21192 matinv 22500 matunit 22501 slesolinv 22503 slesolinvbi 22504 slesolex 22505 nminvr 24507 nmdvr 24508 nrginvrcnlem 24529 ply1divalg 25994 uc1pmon1p 26008 dchrn0 27098 ornglmullt 32857 kerunit 32869 dvdsruassoi 32924 invginvrid 47198 lincresunit3lem3 47309 lincresunitlem1 47310 |
Copyright terms: Public domain | W3C validator |