MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrcan3 Structured version   Visualization version   GIF version

Theorem dvrcan3 20202
Description: A cancellation law for division. (divcan3 11885 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
dvrass.b 𝐵 = (Base‘𝑅)
dvrass.o 𝑈 = (Unit‘𝑅)
dvrass.d / = (/r𝑅)
dvrass.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)

Proof of Theorem dvrcan3
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
2 simp2 1138 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
3 dvrass.b . . . . 5 𝐵 = (Base‘𝑅)
4 dvrass.o . . . . 5 𝑈 = (Unit‘𝑅)
53, 4unitcl 20167 . . . 4 (𝑌𝑈𝑌𝐵)
653ad2ant3 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝐵)
7 simp3 1139 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝑈)
8 dvrass.d . . . 4 / = (/r𝑅)
9 dvrass.t . . . 4 · = (.r𝑅)
103, 4, 8, 9dvrass 20200 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑌𝑈)) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌)))
111, 2, 6, 7, 10syl13anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌)))
12 eqid 2733 . . . . 5 (1r𝑅) = (1r𝑅)
134, 8, 12dvrid 20198 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝑌 / 𝑌) = (1r𝑅))
14133adant2 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑌 / 𝑌) = (1r𝑅))
1514oveq2d 7412 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (𝑌 / 𝑌)) = (𝑋 · (1r𝑅)))
163, 9, 12ringridm 20068 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (1r𝑅)) = 𝑋)
17163adant3 1133 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
1811, 15, 173eqtrd 2777 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cfv 6535  (class class class)co 7396  Basecbs 17131  .rcmulr 17185  1rcur 19987  Ringcrg 20038  Unitcui 20147  /rcdvr 20192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-mgp 19971  df-ur 19988  df-ring 20040  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193
This theorem is referenced by:  irredrmul  20219  cramerimp  22157  lgseisenlem3  26847  orngrmullt  32388
  Copyright terms: Public domain W3C validator