Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvrcan3 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (divcan3 11516 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
dvrass.d | ⊢ / = (/r‘𝑅) |
dvrass.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvrcan3 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
2 | simp2 1139 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
3 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | unitcl 19677 | . . . 4 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
6 | 5 | 3ad2ant3 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
7 | simp3 1140 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
8 | dvrass.d | . . . 4 ⊢ / = (/r‘𝑅) | |
9 | dvrass.t | . . . 4 ⊢ · = (.r‘𝑅) | |
10 | 3, 4, 8, 9 | dvrass 19708 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌))) |
11 | 1, 2, 6, 7, 10 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌))) |
12 | eqid 2737 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
13 | 4, 8, 12 | dvrid 19706 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = (1r‘𝑅)) |
14 | 13 | 3adant2 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = (1r‘𝑅)) |
15 | 14 | oveq2d 7229 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (𝑌 / 𝑌)) = (𝑋 · (1r‘𝑅))) |
16 | 3, 9, 12 | ringridm 19590 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
17 | 16 | 3adant3 1134 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
18 | 11, 15, 17 | 3eqtrd 2781 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 .rcmulr 16803 1rcur 19516 Ringcrg 19562 Unitcui 19657 /rcdvr 19700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 |
This theorem is referenced by: irredrmul 19725 cramerimp 21583 lgseisenlem3 26258 orngrmullt 31226 |
Copyright terms: Public domain | W3C validator |