| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvreq1 | Structured version Visualization version GIF version | ||
| Description: Equality in terms of ratio equal to ring unity. (diveq1 11931 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dvreq1.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvreq1.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvreq1.d | ⊢ / = (/r‘𝑅) |
| dvreq1.t | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| dvreq1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7417 | . . 3 ⊢ ((𝑋 / 𝑌) = 1 → ((𝑋 / 𝑌)(.r‘𝑅)𝑌) = ( 1 (.r‘𝑅)𝑌)) | |
| 2 | dvreq1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | dvreq1.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 4 | dvreq1.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | 2, 3, 4, 5 | dvrcan1 20374 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌)(.r‘𝑅)𝑌) = 𝑋) |
| 7 | 2, 3 | unitcl 20340 | . . . . . 6 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
| 8 | dvreq1.t | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 9 | 2, 5, 8 | ringlidm 20234 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 10 | 7, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 11 | 10 | 3adant2 1131 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 12 | 6, 11 | eqeq12d 2752 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((𝑋 / 𝑌)(.r‘𝑅)𝑌) = ( 1 (.r‘𝑅)𝑌) ↔ 𝑋 = 𝑌)) |
| 13 | 1, 12 | imbitrid 244 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 → 𝑋 = 𝑌)) |
| 14 | 3, 4, 8 | dvrid 20371 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = 1 ) |
| 15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = 1 ) |
| 16 | oveq1 7417 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 / 𝑌) = (𝑌 / 𝑌)) | |
| 17 | 16 | eqeq1d 2738 | . . 3 ⊢ (𝑋 = 𝑌 → ((𝑋 / 𝑌) = 1 ↔ (𝑌 / 𝑌) = 1 )) |
| 18 | 15, 17 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 = 𝑌 → (𝑋 / 𝑌) = 1 )) |
| 19 | 13, 18 | impbid 212 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 1rcur 20146 Ringcrg 20198 Unitcui 20320 /rcdvr 20365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 |
| This theorem is referenced by: lringuplu 20509 sum2dchr 27242 |
| Copyright terms: Public domain | W3C validator |