| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lidlunitel | Structured version Visualization version GIF version | ||
| Description: If an ideal 𝐼 contains a unit 𝐽, then it is the whole ring. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| lidlunitel.1 | ⊢ 𝐵 = (Base‘𝑅) |
| lidlunitel.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| lidlunitel.3 | ⊢ (𝜑 → 𝐽 ∈ 𝑈) |
| lidlunitel.4 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| lidlunitel.5 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| lidlunitel.6 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Ref | Expression |
|---|---|
| lidlunitel | ⊢ (𝜑 → 𝐼 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlunitel.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | lidlunitel.6 | . 2 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
| 3 | lidlunitel.3 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝑈) | |
| 4 | lidlunitel.2 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 4, 5, 6, 7 | unitlinv 20317 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈) → (((invr‘𝑅)‘𝐽)(.r‘𝑅)𝐽) = (1r‘𝑅)) |
| 9 | 1, 3, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝐽)(.r‘𝑅)𝐽) = (1r‘𝑅)) |
| 10 | lidlunitel.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | 10, 4 | unitss 20300 | . . . . 5 ⊢ 𝑈 ⊆ 𝐵 |
| 12 | 4, 5 | unitinvcl 20314 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈) → ((invr‘𝑅)‘𝐽) ∈ 𝑈) |
| 13 | 1, 3, 12 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((invr‘𝑅)‘𝐽) ∈ 𝑈) |
| 14 | 11, 13 | sselid 3927 | . . . 4 ⊢ (𝜑 → ((invr‘𝑅)‘𝐽) ∈ 𝐵) |
| 15 | lidlunitel.4 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 17 | 16, 10, 6 | lidlmcl 21168 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (((invr‘𝑅)‘𝐽) ∈ 𝐵 ∧ 𝐽 ∈ 𝐼)) → (((invr‘𝑅)‘𝐽)(.r‘𝑅)𝐽) ∈ 𝐼) |
| 18 | 1, 2, 14, 15, 17 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝐽)(.r‘𝑅)𝐽) ∈ 𝐼) |
| 19 | 9, 18 | eqeltrrd 2832 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐼) |
| 20 | 16, 10, 7 | lidl1el 21169 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((1r‘𝑅) ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| 21 | 20 | biimpa 476 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (1r‘𝑅) ∈ 𝐼) → 𝐼 = 𝐵) |
| 22 | 1, 2, 19, 21 | syl21anc 837 | 1 ⊢ (𝜑 → 𝐼 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 .rcmulr 17168 1rcur 20105 Ringcrg 20157 Unitcui 20279 invrcinvr 20311 LIdealclidl 21149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-subrg 20491 df-lmod 20801 df-lss 20871 df-sra 21113 df-rgmod 21114 df-lidl 21151 |
| This theorem is referenced by: unitpidl1 33396 dfufd2lem 33521 dfufd2 33522 ig1pnunit 33568 |
| Copyright terms: Public domain | W3C validator |