![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitgrpid | Structured version Visualization version GIF version |
Description: The identity of the multiplicative group is 1r. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
unitmulcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitgrp.2 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
unitgrp.3 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
unitgrpid | ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitmulcl.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | unitgrp.3 | . . 3 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | 1unit 19131 | . 2 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
4 | eqid 2778 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4, 1 | unitss 19133 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑅) |
6 | unitgrp.2 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
7 | 6, 4, 2 | ringidss 19050 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝑈) → 1 = (0g‘𝐺)) |
8 | 5, 7 | mp3an2 1428 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝑈) → 1 = (0g‘𝐺)) |
9 | 3, 8 | mpdan 674 | 1 ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ⊆ wss 3829 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 ↾s cress 16340 0gc0g 16569 mulGrpcmgp 18962 1rcur 18974 Ringcrg 19020 Unitcui 19112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-tpos 7695 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-0g 16571 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-grp 17894 df-mgp 18963 df-ur 18975 df-ring 19022 df-oppr 19096 df-dvdsr 19114 df-unit 19115 |
This theorem is referenced by: unitlinv 19150 unitrinv 19151 drngid 19239 invrvald 20989 dchrabs 25538 dchrptlem2 25543 dchrptlem3 25544 ringinvval 30548 idomodle 39198 proot1ex 39203 |
Copyright terms: Public domain | W3C validator |