![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10376 | . 2 ⊢ 0 ∈ ℝ* | |
2 | 0le0 11420 | . 2 ⊢ 0 ≤ 0 | |
3 | elxrge0 12531 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 703 | 1 ⊢ 0 ∈ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 class class class wbr 4844 (class class class)co 6879 0cc0 10225 +∞cpnf 10361 ℝ*cxr 10363 ≤ cle 10365 [,]cicc 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-addrcl 10286 ax-rnegex 10296 ax-cnre 10298 ax-pre-lttri 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-icc 12430 |
This theorem is referenced by: xrge0subm 20108 itg2const2 23848 itg2splitlem 23855 itg2split 23856 itg2gt0 23867 itg2cnlem2 23869 itg2cn 23870 iblss 23911 itgle 23916 itgeqa 23920 ibladdlem 23926 iblabs 23935 iblabsr 23936 iblmulc2 23937 bddmulibl 23945 xrge0infss 30042 xrge00 30201 unitssxrge0 30461 xrge0mulc1cn 30502 esum0 30626 esumpad 30632 esumpad2 30633 esumrnmpt2 30645 esumpinfval 30650 esummulc1 30658 ddemeas 30814 oms0 30874 itg2gt0cn 33952 ibladdnclem 33953 iblabsnc 33961 iblmulc2nc 33962 bddiblnc 33967 ftc1anclem7 33978 ftc1anclem8 33979 ftc1anc 33980 iblsplit 40920 gsumge0cl 41326 sge0cl 41336 sge0ss 41367 0ome 41484 ovnf 41518 |
Copyright terms: Public domain | W3C validator |