| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11280 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | 0le0 12339 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elxrge0 13472 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 class class class wbr 5119 (class class class)co 7403 0cc0 11127 +∞cpnf 11264 ℝ*cxr 11266 ≤ cle 11268 [,]cicc 13363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-addrcl 11188 ax-rnegex 11198 ax-cnre 11200 ax-pre-lttri 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-icc 13367 |
| This theorem is referenced by: xrge0subm 21373 itg2const2 25692 itg2splitlem 25699 itg2split 25700 itg2gt0 25711 itg2cnlem2 25713 itg2cn 25714 iblss 25756 itgle 25761 itgeqa 25765 ibladdlem 25771 iblabs 25780 iblabsr 25781 iblmulc2 25782 bddmulibl 25790 bddiblnc 25793 xrge0infss 32683 xrge00 32953 unitssxrge0 33877 xrge0mulc1cn 33918 esum0 34026 esumpad 34032 esumpad2 34033 esumrnmpt2 34045 esumpinfval 34050 esummulc1 34058 ddemeas 34213 oms0 34275 itg2gt0cn 37645 ibladdnclem 37646 iblabsnc 37654 iblmulc2nc 37655 ftc1anclem7 37669 ftc1anclem8 37670 ftc1anc 37671 iblsplit 45943 gsumge0cl 46348 sge0cl 46358 sge0ss 46389 0ome 46506 ovnf 46540 |
| Copyright terms: Public domain | W3C validator |