![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11292 | . 2 ⊢ 0 ∈ ℝ* | |
2 | 0le0 12344 | . 2 ⊢ 0 ≤ 0 | |
3 | elxrge0 13467 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 0 ∈ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 class class class wbr 5148 (class class class)co 7420 0cc0 11139 +∞cpnf 11276 ℝ*cxr 11278 ≤ cle 11280 [,]cicc 13360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-addrcl 11200 ax-rnegex 11210 ax-cnre 11212 ax-pre-lttri 11213 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-icc 13364 |
This theorem is referenced by: xrge0subm 21340 itg2const2 25684 itg2splitlem 25691 itg2split 25692 itg2gt0 25703 itg2cnlem2 25705 itg2cn 25706 iblss 25747 itgle 25752 itgeqa 25756 ibladdlem 25762 iblabs 25771 iblabsr 25772 iblmulc2 25773 bddmulibl 25781 bddiblnc 25784 xrge0infss 32543 xrge00 32755 unitssxrge0 33501 xrge0mulc1cn 33542 esum0 33668 esumpad 33674 esumpad2 33675 esumrnmpt2 33687 esumpinfval 33692 esummulc1 33700 ddemeas 33855 oms0 33917 itg2gt0cn 37148 ibladdnclem 37149 iblabsnc 37157 iblmulc2nc 37158 ftc1anclem7 37172 ftc1anclem8 37173 ftc1anc 37174 iblsplit 45354 gsumge0cl 45759 sge0cl 45769 sge0ss 45800 0ome 45917 ovnf 45951 |
Copyright terms: Public domain | W3C validator |