Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10953 | . 2 ⊢ 0 ∈ ℝ* | |
2 | 0le0 12004 | . 2 ⊢ 0 ≤ 0 | |
3 | elxrge0 13118 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ 0 ∈ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: xrge0subm 20551 itg2const2 24811 itg2splitlem 24818 itg2split 24819 itg2gt0 24830 itg2cnlem2 24832 itg2cn 24833 iblss 24874 itgle 24879 itgeqa 24883 ibladdlem 24889 iblabs 24898 iblabsr 24899 iblmulc2 24900 bddmulibl 24908 bddiblnc 24911 xrge0infss 30985 xrge00 31197 unitssxrge0 31752 xrge0mulc1cn 31793 esum0 31917 esumpad 31923 esumpad2 31924 esumrnmpt2 31936 esumpinfval 31941 esummulc1 31949 ddemeas 32104 oms0 32164 itg2gt0cn 35759 ibladdnclem 35760 iblabsnc 35768 iblmulc2nc 35769 ftc1anclem7 35783 ftc1anclem8 35784 ftc1anc 35785 iblsplit 43397 gsumge0cl 43799 sge0cl 43809 sge0ss 43840 0ome 43957 ovnf 43991 |
Copyright terms: Public domain | W3C validator |