Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11022 | . 2 ⊢ 0 ∈ ℝ* | |
2 | 0le0 12074 | . 2 ⊢ 0 ≤ 0 | |
3 | elxrge0 13189 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ 0 ∈ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: xrge0subm 20639 itg2const2 24906 itg2splitlem 24913 itg2split 24914 itg2gt0 24925 itg2cnlem2 24927 itg2cn 24928 iblss 24969 itgle 24974 itgeqa 24978 ibladdlem 24984 iblabs 24993 iblabsr 24994 iblmulc2 24995 bddmulibl 25003 bddiblnc 25006 xrge0infss 31083 xrge00 31295 unitssxrge0 31850 xrge0mulc1cn 31891 esum0 32017 esumpad 32023 esumpad2 32024 esumrnmpt2 32036 esumpinfval 32041 esummulc1 32049 ddemeas 32204 oms0 32264 itg2gt0cn 35832 ibladdnclem 35833 iblabsnc 35841 iblmulc2nc 35842 ftc1anclem7 35856 ftc1anclem8 35857 ftc1anc 35858 iblsplit 43507 gsumge0cl 43909 sge0cl 43919 sge0ss 43950 0ome 44067 ovnf 44101 |
Copyright terms: Public domain | W3C validator |