| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11221 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | 0le0 12287 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elxrge0 13418 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 |
| This theorem is referenced by: xrge0subm 21324 itg2const2 25642 itg2splitlem 25649 itg2split 25650 itg2gt0 25661 itg2cnlem2 25663 itg2cn 25664 iblss 25706 itgle 25711 itgeqa 25715 ibladdlem 25721 iblabs 25730 iblabsr 25731 iblmulc2 25732 bddmulibl 25740 bddiblnc 25743 xrge0infss 32683 xrge00 32953 unitssxrge0 33890 xrge0mulc1cn 33931 esum0 34039 esumpad 34045 esumpad2 34046 esumrnmpt2 34058 esumpinfval 34063 esummulc1 34071 ddemeas 34226 oms0 34288 itg2gt0cn 37669 ibladdnclem 37670 iblabsnc 37678 iblmulc2nc 37679 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 iblsplit 45964 gsumge0cl 46369 sge0cl 46379 sge0ss 46410 0ome 46527 ovnf 46561 |
| Copyright terms: Public domain | W3C validator |