| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11228 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | 0le0 12294 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elxrge0 13425 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: xrge0subm 21331 itg2const2 25649 itg2splitlem 25656 itg2split 25657 itg2gt0 25668 itg2cnlem2 25670 itg2cn 25671 iblss 25713 itgle 25718 itgeqa 25722 ibladdlem 25728 iblabs 25737 iblabsr 25738 iblmulc2 25739 bddmulibl 25747 bddiblnc 25750 xrge0infss 32690 xrge00 32960 unitssxrge0 33897 xrge0mulc1cn 33938 esum0 34046 esumpad 34052 esumpad2 34053 esumrnmpt2 34065 esumpinfval 34070 esummulc1 34078 ddemeas 34233 oms0 34295 itg2gt0cn 37676 ibladdnclem 37677 iblabsnc 37685 iblmulc2nc 37686 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 iblsplit 45971 gsumge0cl 46376 sge0cl 46386 sge0ss 46417 0ome 46534 ovnf 46568 |
| Copyright terms: Public domain | W3C validator |