Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11033 | . 2 ⊢ 0 ∈ ℝ* | |
2 | 0le0 12085 | . 2 ⊢ 0 ≤ 0 | |
3 | elxrge0 13200 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ 0 ∈ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 class class class wbr 5079 (class class class)co 7272 0cc0 10882 +∞cpnf 11017 ℝ*cxr 11019 ≤ cle 11021 [,]cicc 13093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-addrcl 10943 ax-rnegex 10953 ax-cnre 10955 ax-pre-lttri 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-icc 13097 |
This theorem is referenced by: xrge0subm 20650 itg2const2 24917 itg2splitlem 24924 itg2split 24925 itg2gt0 24936 itg2cnlem2 24938 itg2cn 24939 iblss 24980 itgle 24985 itgeqa 24989 ibladdlem 24995 iblabs 25004 iblabsr 25005 iblmulc2 25006 bddmulibl 25014 bddiblnc 25017 xrge0infss 31092 xrge00 31304 unitssxrge0 31859 xrge0mulc1cn 31900 esum0 32026 esumpad 32032 esumpad2 32033 esumrnmpt2 32045 esumpinfval 32050 esummulc1 32058 ddemeas 32213 oms0 32273 itg2gt0cn 35841 ibladdnclem 35842 iblabsnc 35850 iblmulc2nc 35851 ftc1anclem7 35865 ftc1anclem8 35866 ftc1anc 35867 iblsplit 43489 gsumge0cl 43891 sge0cl 43901 sge0ss 43932 0ome 44049 ovnf 44083 |
Copyright terms: Public domain | W3C validator |