| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11162 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | 0le0 12229 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elxrge0 13360 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-icc 13255 |
| This theorem is referenced by: xrge0subm 21350 itg2const2 25640 itg2splitlem 25647 itg2split 25648 itg2gt0 25659 itg2cnlem2 25661 itg2cn 25662 iblss 25704 itgle 25709 itgeqa 25713 ibladdlem 25719 iblabs 25728 iblabsr 25729 iblmulc2 25730 bddmulibl 25738 bddiblnc 25741 xrge0infss 32712 xrge00 32977 unitssxrge0 33883 xrge0mulc1cn 33924 esum0 34032 esumpad 34038 esumpad2 34039 esumrnmpt2 34051 esumpinfval 34056 esummulc1 34064 ddemeas 34219 oms0 34281 itg2gt0cn 37675 ibladdnclem 37676 iblabsnc 37684 iblmulc2nc 37685 ftc1anclem7 37699 ftc1anclem8 37700 ftc1anc 37701 iblsplit 45967 gsumge0cl 46372 sge0cl 46382 sge0ss 46413 0ome 46530 ovnf 46564 |
| Copyright terms: Public domain | W3C validator |