| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0iccpnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0iccpnf | ⊢ 0 ∈ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11159 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | 0le0 12226 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elxrge0 13357 | . 2 ⊢ (0 ∈ (0[,]+∞) ↔ (0 ∈ ℝ* ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 ℝ*cxr 11145 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 |
| This theorem is referenced by: xrge0subm 21380 itg2const2 25669 itg2splitlem 25676 itg2split 25677 itg2gt0 25688 itg2cnlem2 25690 itg2cn 25691 iblss 25733 itgle 25738 itgeqa 25742 ibladdlem 25748 iblabs 25757 iblabsr 25758 iblmulc2 25759 bddmulibl 25767 bddiblnc 25770 xrge0infss 32743 xrge00 32995 unitssxrge0 33913 xrge0mulc1cn 33954 esum0 34062 esumpad 34068 esumpad2 34069 esumrnmpt2 34081 esumpinfval 34086 esummulc1 34094 ddemeas 34249 oms0 34310 itg2gt0cn 37714 ibladdnclem 37715 iblabsnc 37723 iblmulc2nc 37724 ftc1anclem7 37738 ftc1anclem8 37739 ftc1anc 37740 iblsplit 46063 gsumge0cl 46468 sge0cl 46478 sge0ss 46509 0ome 46626 ovnf 46660 |
| Copyright terms: Public domain | W3C validator |