ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2expltfac GIF version

Theorem 2expltfac 12832
Description: The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))

Proof of Theorem 2expltfac
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5964 . . . 4 (𝑥 = 4 → (2↑𝑥) = (2↑4))
2 2exp4 12824 . . . 4 (2↑4) = 16
31, 2eqtrdi 2255 . . 3 (𝑥 = 4 → (2↑𝑥) = 16)
4 fveq2 5588 . . . 4 (𝑥 = 4 → (!‘𝑥) = (!‘4))
5 fac4 10895 . . . 4 (!‘4) = 24
64, 5eqtrdi 2255 . . 3 (𝑥 = 4 → (!‘𝑥) = 24)
73, 6breq12d 4063 . 2 (𝑥 = 4 → ((2↑𝑥) < (!‘𝑥) ↔ 16 < 24))
8 oveq2 5964 . . 3 (𝑥 = 𝑛 → (2↑𝑥) = (2↑𝑛))
9 fveq2 5588 . . 3 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
108, 9breq12d 4063 . 2 (𝑥 = 𝑛 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑛) < (!‘𝑛)))
11 oveq2 5964 . . 3 (𝑥 = (𝑛 + 1) → (2↑𝑥) = (2↑(𝑛 + 1)))
12 fveq2 5588 . . 3 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1311, 12breq12d 4063 . 2 (𝑥 = (𝑛 + 1) → ((2↑𝑥) < (!‘𝑥) ↔ (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
14 oveq2 5964 . . 3 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
15 fveq2 5588 . . 3 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1614, 15breq12d 4063 . 2 (𝑥 = 𝑁 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑁) < (!‘𝑁)))
17 1nn0 9326 . . 3 1 ∈ ℕ0
18 2nn0 9327 . . 3 2 ∈ ℕ0
19 6nn0 9331 . . 3 6 ∈ ℕ0
20 4nn0 9329 . . 3 4 ∈ ℕ0
21 6lt10 9652 . . 3 6 < 10
22 1lt2 9221 . . 3 1 < 2
2317, 18, 19, 20, 21, 22decltc 9547 . 2 16 < 24
24 2nn 9213 . . . . . . . . 9 2 ∈ ℕ
2524a1i 9 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℕ)
26 4nn 9215 . . . . . . . . . 10 4 ∈ ℕ
27 simpl 109 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ (ℤ‘4))
28 eluznn 9736 . . . . . . . . . 10 ((4 ∈ ℕ ∧ 𝑛 ∈ (ℤ‘4)) → 𝑛 ∈ ℕ)
2926, 27, 28sylancr 414 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ)
3029nnnn0d 9363 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ0)
3125, 30nnexpcld 10857 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℕ)
3231nnred 9064 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℝ)
33 2re 9121 . . . . . . 7 2 ∈ ℝ
3433a1i 9 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ)
3532, 34remulcld 8118 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) ∈ ℝ)
3630faccld 10898 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ)
3736nnred 9064 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℝ)
3837, 34remulcld 8118 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ∈ ℝ)
3929nnred 9064 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℝ)
40 1red 8102 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ∈ ℝ)
4139, 40readdcld 8117 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (𝑛 + 1) ∈ ℝ)
4237, 41remulcld 8118 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · (𝑛 + 1)) ∈ ℝ)
43 2rp 9795 . . . . . . 7 2 ∈ ℝ+
4443a1i 9 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ+)
45 simpr 110 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) < (!‘𝑛))
4632, 37, 44, 45ltmul1dd 9889 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · 2))
4736nnnn0d 9363 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ0)
4847nn0ge0d 9366 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 0 ≤ (!‘𝑛))
49 df-2 9110 . . . . . . 7 2 = (1 + 1)
5029nnge1d 9094 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ≤ 𝑛)
5140, 39, 40, 50leadd1dd 8647 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (1 + 1) ≤ (𝑛 + 1))
5249, 51eqbrtrid 4085 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ≤ (𝑛 + 1))
5334, 41, 37, 48, 52lemul2ad 9028 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ≤ ((!‘𝑛) · (𝑛 + 1)))
5435, 38, 42, 46, 53ltletrd 8511 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · (𝑛 + 1)))
55 2cnd 9124 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℂ)
5655, 30expp1d 10836 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) = ((2↑𝑛) · 2))
57 facp1 10892 . . . . 5 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5830, 57syl 14 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5954, 56, 583brtr4d 4082 . . 3 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1)))
6059ex 115 . 2 (𝑛 ∈ (ℤ‘4) → ((2↑𝑛) < (!‘𝑛) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
617, 10, 13, 16, 23, 60uzind4i 9728 1 (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177   class class class wbr 4050  cfv 5279  (class class class)co 5956  cr 7939  1c1 7941   + caddc 7943   · cmul 7945   < clt 8122  cle 8123  cn 9051  2c2 9102  4c4 9104  6c6 9106  0cn0 9310  cdc 9519  cuz 9663  +crp 9790  cexp 10700  !cfa 10887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-7 9115  df-8 9116  df-9 9117  df-n0 9311  df-z 9388  df-dec 9520  df-uz 9664  df-rp 9791  df-seqfrec 10610  df-exp 10701  df-fac 10888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator