| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > perfect | Unicode version | ||
| Description: The Euclid-Euler theorem,
or Perfect Number theorem. A positive even
integer |
| Ref | Expression |
|---|---|
| perfect |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . . 7
| |
| 2 | 2prm 12493 |
. . . . . . . 8
| |
| 3 | simpll 527 |
. . . . . . . 8
| |
| 4 | pcelnn 12688 |
. . . . . . . 8
| |
| 5 | 2, 3, 4 | sylancr 414 |
. . . . . . 7
|
| 6 | 1, 5 | mpbird 167 |
. . . . . 6
|
| 7 | 6 | nnzd 9501 |
. . . . 5
|
| 8 | 7 | peano2zd 9505 |
. . . 4
|
| 9 | pcdvds 12682 |
. . . . . . . . 9
| |
| 10 | 2, 3, 9 | sylancr 414 |
. . . . . . . 8
|
| 11 | 2nn 9205 |
. . . . . . . . . 10
| |
| 12 | 6 | nnnn0d 9355 |
. . . . . . . . . 10
|
| 13 | nnexpcl 10704 |
. . . . . . . . . 10
| |
| 14 | 11, 12, 13 | sylancr 414 |
. . . . . . . . 9
|
| 15 | nndivdvds 12151 |
. . . . . . . . 9
| |
| 16 | 3, 14, 15 | syl2anc 411 |
. . . . . . . 8
|
| 17 | 10, 16 | mpbid 147 |
. . . . . . 7
|
| 18 | pcndvds2 12686 |
. . . . . . . 8
| |
| 19 | 2, 3, 18 | sylancr 414 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | nncn 9051 |
. . . . . . . . . . 11
| |
| 22 | 21 | ad2antrr 488 |
. . . . . . . . . 10
|
| 23 | 14 | nncnd 9057 |
. . . . . . . . . 10
|
| 24 | 14 | nnap0d 9089 |
. . . . . . . . . 10
|
| 25 | 22, 23, 24 | divcanap2d 8872 |
. . . . . . . . 9
|
| 26 | 25 | oveq2d 5967 |
. . . . . . . 8
|
| 27 | 25 | oveq2d 5967 |
. . . . . . . 8
|
| 28 | 20, 26, 27 | 3eqtr4d 2249 |
. . . . . . 7
|
| 29 | 6, 17, 19, 28 | perfectlem2 15516 |
. . . . . 6
|
| 30 | 29 | simprd 114 |
. . . . 5
|
| 31 | 29 | simpld 112 |
. . . . 5
|
| 32 | 30, 31 | eqeltrrd 2284 |
. . . 4
|
| 33 | 6 | nncnd 9057 |
. . . . . . . . 9
|
| 34 | ax-1cn 8025 |
. . . . . . . . 9
| |
| 35 | pncan 8285 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | sylancl 413 |
. . . . . . . 8
|
| 37 | 36 | eqcomd 2212 |
. . . . . . 7
|
| 38 | 37 | oveq2d 5967 |
. . . . . 6
|
| 39 | 38, 30 | oveq12d 5969 |
. . . . 5
|
| 40 | 25, 39 | eqtr3d 2241 |
. . . 4
|
| 41 | oveq2 5959 |
. . . . . . . 8
| |
| 42 | 41 | oveq1d 5966 |
. . . . . . 7
|
| 43 | 42 | eleq1d 2275 |
. . . . . 6
|
| 44 | oveq1 5958 |
. . . . . . . . 9
| |
| 45 | 44 | oveq2d 5967 |
. . . . . . . 8
|
| 46 | 45, 42 | oveq12d 5969 |
. . . . . . 7
|
| 47 | 46 | eqeq2d 2218 |
. . . . . 6
|
| 48 | 43, 47 | anbi12d 473 |
. . . . 5
|
| 49 | 48 | rspcev 2878 |
. . . 4
|
| 50 | 8, 32, 40, 49 | syl12anc 1248 |
. . 3
|
| 51 | 50 | ex 115 |
. 2
|
| 52 | perfect1 15514 |
. . . . . 6
| |
| 53 | 2cn 9114 |
. . . . . . . . 9
| |
| 54 | mersenne 15513 |
. . . . . . . . . 10
| |
| 55 | prmnn 12476 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . . 9
|
| 57 | expm1t 10719 |
. . . . . . . . 9
| |
| 58 | 53, 56, 57 | sylancr 414 |
. . . . . . . 8
|
| 59 | nnm1nn0 9343 |
. . . . . . . . . . 11
| |
| 60 | 56, 59 | syl 14 |
. . . . . . . . . 10
|
| 61 | expcl 10709 |
. . . . . . . . . 10
| |
| 62 | 53, 60, 61 | sylancr 414 |
. . . . . . . . 9
|
| 63 | mulcom 8061 |
. . . . . . . . 9
| |
| 64 | 62, 53, 63 | sylancl 413 |
. . . . . . . 8
|
| 65 | 58, 64 | eqtrd 2239 |
. . . . . . 7
|
| 66 | 65 | oveq1d 5966 |
. . . . . 6
|
| 67 | 2cnd 9116 |
. . . . . . 7
| |
| 68 | prmnn 12476 |
. . . . . . . . 9
| |
| 69 | 68 | adantl 277 |
. . . . . . . 8
|
| 70 | 69 | nncnd 9057 |
. . . . . . 7
|
| 71 | 67, 62, 70 | mulassd 8103 |
. . . . . 6
|
| 72 | 52, 66, 71 | 3eqtrd 2243 |
. . . . 5
|
| 73 | oveq2 5959 |
. . . . . 6
| |
| 74 | oveq2 5959 |
. . . . . 6
| |
| 75 | 73, 74 | eqeq12d 2221 |
. . . . 5
|
| 76 | 72, 75 | syl5ibrcom 157 |
. . . 4
|
| 77 | 76 | impr 379 |
. . 3
|
| 78 | 77 | rexlimiva 2619 |
. 2
|
| 79 | 51, 78 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-pre-suploc 8053 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-disj 4024 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-2o 6510 df-oadd 6513 df-er 6627 df-map 6744 df-pm 6745 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-xnn0 9366 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-ico 10023 df-icc 10024 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-fac 10878 df-bc 10900 df-ihash 10928 df-shft 11170 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ef 12003 df-e 12004 df-dvds 12143 df-gcd 12319 df-prm 12474 df-pc 12652 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 df-limced 15172 df-dvap 15173 df-relog 15374 df-rpcxp 15375 df-sgm 15498 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |