| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > perfect | Unicode version | ||
| Description: The Euclid-Euler theorem,
or Perfect Number theorem.  A positive even
       integer  | 
| Ref | Expression | 
|---|---|
| perfect | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplr 528 | 
. . . . . . 7
 | |
| 2 | 2prm 12295 | 
. . . . . . . 8
 | |
| 3 | simpll 527 | 
. . . . . . . 8
 | |
| 4 | pcelnn 12490 | 
. . . . . . . 8
 | |
| 5 | 2, 3, 4 | sylancr 414 | 
. . . . . . 7
 | 
| 6 | 1, 5 | mpbird 167 | 
. . . . . 6
 | 
| 7 | 6 | nnzd 9447 | 
. . . . 5
 | 
| 8 | 7 | peano2zd 9451 | 
. . . 4
 | 
| 9 | pcdvds 12484 | 
. . . . . . . . 9
 | |
| 10 | 2, 3, 9 | sylancr 414 | 
. . . . . . . 8
 | 
| 11 | 2nn 9152 | 
. . . . . . . . . 10
 | |
| 12 | 6 | nnnn0d 9302 | 
. . . . . . . . . 10
 | 
| 13 | nnexpcl 10644 | 
. . . . . . . . . 10
 | |
| 14 | 11, 12, 13 | sylancr 414 | 
. . . . . . . . 9
 | 
| 15 | nndivdvds 11961 | 
. . . . . . . . 9
 | |
| 16 | 3, 14, 15 | syl2anc 411 | 
. . . . . . . 8
 | 
| 17 | 10, 16 | mpbid 147 | 
. . . . . . 7
 | 
| 18 | pcndvds2 12488 | 
. . . . . . . 8
 | |
| 19 | 2, 3, 18 | sylancr 414 | 
. . . . . . 7
 | 
| 20 | simpr 110 | 
. . . . . . . 8
 | |
| 21 | nncn 8998 | 
. . . . . . . . . . 11
 | |
| 22 | 21 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 23 | 14 | nncnd 9004 | 
. . . . . . . . . 10
 | 
| 24 | 14 | nnap0d 9036 | 
. . . . . . . . . 10
 | 
| 25 | 22, 23, 24 | divcanap2d 8819 | 
. . . . . . . . 9
 | 
| 26 | 25 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 27 | 25 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 28 | 20, 26, 27 | 3eqtr4d 2239 | 
. . . . . . 7
 | 
| 29 | 6, 17, 19, 28 | perfectlem2 15236 | 
. . . . . 6
 | 
| 30 | 29 | simprd 114 | 
. . . . 5
 | 
| 31 | 29 | simpld 112 | 
. . . . 5
 | 
| 32 | 30, 31 | eqeltrrd 2274 | 
. . . 4
 | 
| 33 | 6 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 34 | ax-1cn 7972 | 
. . . . . . . . 9
 | |
| 35 | pncan 8232 | 
. . . . . . . . 9
 | |
| 36 | 33, 34, 35 | sylancl 413 | 
. . . . . . . 8
 | 
| 37 | 36 | eqcomd 2202 | 
. . . . . . 7
 | 
| 38 | 37 | oveq2d 5938 | 
. . . . . 6
 | 
| 39 | 38, 30 | oveq12d 5940 | 
. . . . 5
 | 
| 40 | 25, 39 | eqtr3d 2231 | 
. . . 4
 | 
| 41 | oveq2 5930 | 
. . . . . . . 8
 | |
| 42 | 41 | oveq1d 5937 | 
. . . . . . 7
 | 
| 43 | 42 | eleq1d 2265 | 
. . . . . 6
 | 
| 44 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 45 | 44 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 46 | 45, 42 | oveq12d 5940 | 
. . . . . . 7
 | 
| 47 | 46 | eqeq2d 2208 | 
. . . . . 6
 | 
| 48 | 43, 47 | anbi12d 473 | 
. . . . 5
 | 
| 49 | 48 | rspcev 2868 | 
. . . 4
 | 
| 50 | 8, 32, 40, 49 | syl12anc 1247 | 
. . 3
 | 
| 51 | 50 | ex 115 | 
. 2
 | 
| 52 | perfect1 15234 | 
. . . . . 6
 | |
| 53 | 2cn 9061 | 
. . . . . . . . 9
 | |
| 54 | mersenne 15233 | 
. . . . . . . . . 10
 | |
| 55 | prmnn 12278 | 
. . . . . . . . . 10
 | |
| 56 | 54, 55 | syl 14 | 
. . . . . . . . 9
 | 
| 57 | expm1t 10659 | 
. . . . . . . . 9
 | |
| 58 | 53, 56, 57 | sylancr 414 | 
. . . . . . . 8
 | 
| 59 | nnm1nn0 9290 | 
. . . . . . . . . . 11
 | |
| 60 | 56, 59 | syl 14 | 
. . . . . . . . . 10
 | 
| 61 | expcl 10649 | 
. . . . . . . . . 10
 | |
| 62 | 53, 60, 61 | sylancr 414 | 
. . . . . . . . 9
 | 
| 63 | mulcom 8008 | 
. . . . . . . . 9
 | |
| 64 | 62, 53, 63 | sylancl 413 | 
. . . . . . . 8
 | 
| 65 | 58, 64 | eqtrd 2229 | 
. . . . . . 7
 | 
| 66 | 65 | oveq1d 5937 | 
. . . . . 6
 | 
| 67 | 2cnd 9063 | 
. . . . . . 7
 | |
| 68 | prmnn 12278 | 
. . . . . . . . 9
 | |
| 69 | 68 | adantl 277 | 
. . . . . . . 8
 | 
| 70 | 69 | nncnd 9004 | 
. . . . . . 7
 | 
| 71 | 67, 62, 70 | mulassd 8050 | 
. . . . . 6
 | 
| 72 | 52, 66, 71 | 3eqtrd 2233 | 
. . . . 5
 | 
| 73 | oveq2 5930 | 
. . . . . 6
 | |
| 74 | oveq2 5930 | 
. . . . . 6
 | |
| 75 | 73, 74 | eqeq12d 2211 | 
. . . . 5
 | 
| 76 | 72, 75 | syl5ibrcom 157 | 
. . . 4
 | 
| 77 | 76 | impr 379 | 
. . 3
 | 
| 78 | 77 | rexlimiva 2609 | 
. 2
 | 
| 79 | 51, 78 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-xnn0 9313 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-e 11814 df-dvds 11953 df-gcd 12121 df-prm 12276 df-pc 12454 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 df-relog 15094 df-rpcxp 15095 df-sgm 15218 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |