ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad3 Unicode version

Theorem lgsquad3 15241
Description: Extend lgsquad2 15240 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad3  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  /L
N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )

Proof of Theorem lgsquad3
StepHypRef Expression
1 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
21nnzd 9441 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
3 nnz 9339 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  ZZ )
43ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
5 lgscl 15171 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  /L
M )  e.  ZZ )
62, 4, 5syl2anc 411 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  ZZ )
76zred 9442 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  RR )
8 absresq 11225 . . . . . . 7  |-  ( ( N  /L M )  e.  RR  ->  ( ( abs `  ( N  /L M ) ) ^ 2 )  =  ( ( N  /L M ) ^ 2 ) )
97, 8syl 14 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  ( ( N  /L
M ) ^ 2 ) )
102, 4gcdcomd 12114 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N ) )
11 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
1210, 11eqtrd 2226 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
13 lgsabs1 15196 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  ( N  /L M ) )  =  1  <->  ( N  gcd  M )  =  1 ) )
142, 4, 13syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) )  =  1  <->  ( N  gcd  M )  =  1 ) )
1512, 14mpbird 167 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( abs `  ( N  /L M ) )  =  1 )
1615oveq1d 5934 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  ( 1 ^ 2 ) )
17 sq1 10707 . . . . . . 7  |-  ( 1 ^ 2 )  =  1
1816, 17eqtrdi 2242 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  1 )
196zcnd 9443 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  CC )
2019sqvald 10744 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( N  /L M ) ^ 2 )  =  ( ( N  /L M )  x.  ( N  /L
M ) ) )
219, 18, 203eqtr3d 2234 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  1  =  ( ( N  /L
M )  x.  ( N  /L M ) ) )
2221oveq2d 5935 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( ( M  /L N )  x.  ( ( N  /L M )  x.  ( N  /L
M ) ) ) )
23 lgscl 15171 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  /L
N )  e.  ZZ )
244, 2, 23syl2anc 411 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  e.  ZZ )
2524zcnd 9443 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  e.  CC )
2625, 19, 19mulassd 8045 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) )  =  ( ( M  /L N )  x.  ( ( N  /L M )  x.  ( N  /L M ) ) ) )
2722, 26eqtr4d 2229 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) ) )
2825mulridd 8038 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( M  /L
N ) )
29 simplll 533 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  M  e.  NN )
30 simpllr 534 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  -.  2  ||  M )
31 simplrr 536 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  -.  2  ||  N )
3229, 30, 1, 31, 11lgsquad2 15240 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
3332oveq1d 5934 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) )  =  ( (
-u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )
3427, 28, 333eqtr3d 2234 . 2  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  x.  ( N  /L
M ) ) )
35 neg1cn 9089 . . . . . 6  |-  -u 1  e.  CC
3635a1i 9 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -u 1  e.  CC )
37 neg1ap0 9093 . . . . . 6  |-  -u 1 #  0
3837a1i 9 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -u 1 #  0 )
393ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
40 simpllr 534 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  M )
41 1zzd 9347 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  1  e.  ZZ )
42 2prm 12268 . . . . . . . . 9  |-  2  e.  Prime
43 nprmdvds1 12281 . . . . . . . . 9  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
4442, 43mp1i 10 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  1 )
45 omoe 12040 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\ 
-.  2  ||  M
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( M  -  1 ) )
4639, 40, 41, 44, 45syl22anc 1250 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  ||  ( M  -  1 ) )
47 2z 9348 . . . . . . . 8  |-  2  e.  ZZ
48 2ne0 9076 . . . . . . . 8  |-  2  =/=  0
49 peano2zm 9358 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
5039, 49syl 14 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  -  1 )  e.  ZZ )
51 dvdsval2 11936 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( M  -  1 )  e.  ZZ )  -> 
( 2  ||  ( M  -  1 )  <-> 
( ( M  - 
1 )  /  2
)  e.  ZZ ) )
5247, 48, 50, 51mp3an12i 1352 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
2  ||  ( M  -  1 )  <->  ( ( M  -  1 )  /  2 )  e.  ZZ ) )
5346, 52mpbid 147 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( M  -  1 )  /  2 )  e.  ZZ )
54 nnz 9339 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
5554adantr 276 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  ZZ )
5655ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
57 simplrr 536 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  N )
58 omoe 12040 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
5956, 57, 41, 44, 58syl22anc 1250 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  ||  ( N  -  1 ) )
60 peano2zm 9358 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
6156, 60syl 14 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( N  -  1 )  e.  ZZ )
62 dvdsval2 11936 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
6347, 48, 61, 62mp3an12i 1352 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
2  ||  ( N  -  1 )  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
6459, 63mpbid 147 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( N  -  1 )  /  2 )  e.  ZZ )
6553, 64zmulcld 9448 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  e.  ZZ )
6636, 38, 65expclzapd 10752 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  e.  CC )
6766mul01d 8414 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( -u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  0 )  =  0 )
6854, 3, 5syl2anr 290 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /L
M )  e.  ZZ )
69 0zd 9332 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  e.  ZZ )
70 zdceq 9395 . . . . . . . 8  |-  ( ( ( N  /L
M )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( N  /L
M )  =  0 )
7168, 69, 70syl2anc 411 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  -> DECID  ( N  /L M )  =  0 )
72 lgsne0 15195 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  /L M )  =/=  0  <->  ( N  gcd  M )  =  1 ) )
73 gcdcom 12113 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
7473eqeq1d 2202 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  gcd  M )  =  1  <->  ( M  gcd  N )  =  1 ) )
7572, 74bitrd 188 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
7654, 3, 75syl2anr 290 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
7776a1d 22 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  (DECID  ( N  /L
M )  =  0  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) ) )
7877necon1bbiddc 2427 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  (DECID  ( N  /L
M )  =  0  ->  ( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) ) )
7971, 78mpd 13 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) )
8079ad2ant2r 509 . . . . 5  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) )
8180biimpa 296 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  =  0 )
8281oveq2d 5935 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( -u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) )  =  ( (
-u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  0 ) )
83 0zd 9332 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
84 zdceq 9395 . . . . . . . 8  |-  ( ( ( M  /L
N )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( M  /L
N )  =  0 )
8523, 83, 84syl2anc 411 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  /L N )  =  0 )
86 lgsne0 15195 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  /L N )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
8786a1d 22 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (DECID  ( M  /L
N )  =  0  ->  ( ( M  /L N )  =/=  0  <->  ( M  gcd  N )  =  1 ) ) )
8887necon1bbiddc 2427 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (DECID  ( M  /L
N )  =  0  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) ) )
8985, 88mpd 13 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
903, 54, 89syl2an 289 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
9190ad2ant2r 509 . . . 4  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
9291biimpa 296 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  0 )
9367, 82, 923eqtr4rd 2237 . 2  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  x.  ( N  /L M ) ) )
94 gcdnncl 12107 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
9594ad2ant2r 509 . . . . 5  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  gcd  N
)  e.  NN )
9695nnzd 9441 . . . 4  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  gcd  N
)  e.  ZZ )
97 1zzd 9347 . . . 4  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
1  e.  ZZ )
98 zdceq 9395 . . . 4  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( M  gcd  N )  =  1 )
9996, 97, 98syl2anc 411 . . 3  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> DECID  ( M  gcd  N )  =  1 )
100 exmiddc 837 . . 3  |-  (DECID  ( M  gcd  N )  =  1  ->  ( ( M  gcd  N )  =  1  \/  -.  ( M  gcd  N )  =  1 ) )
10199, 100syl 14 . 2  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( ( M  gcd  N )  =  1  \/ 
-.  ( M  gcd  N )  =  1 ) )
10234, 93, 101mpjaodan 799 1  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  /L
N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    x. cmul 7879    - cmin 8192   -ucneg 8193   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   ZZcz 9320   ^cexp 10612   abscabs 11144    || cdvds 11933    gcd cgcd 12082   Primecprime 12248    /Lclgs 15154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-tpos 6300  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-ec 6591  df-qs 6595  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352  df-pc 12426  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-sca 12714  df-vsca 12715  df-ip 12716  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-igsum 12873  df-topgen 12874  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-submnd 13035  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mulg 13193  df-subg 13243  df-nsg 13244  df-eqg 13245  df-ghm 13314  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-dvr 13631  df-rhm 13651  df-nzr 13679  df-subrg 13718  df-domn 13758  df-idom 13759  df-lmod 13788  df-lssm 13852  df-lsp 13886  df-sra 13934  df-rgmod 13935  df-lidl 13968  df-rsp 13969  df-2idl 13999  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-zring 14090  df-zrh 14113  df-zn 14115  df-lgs 15155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator