| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsquad3 | Unicode version | ||
| Description: Extend lgsquad2 15334 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsquad3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrl 535 |
. . . . . . . . . 10
| |
| 2 | 1 | nnzd 9449 |
. . . . . . . . 9
|
| 3 | nnz 9347 |
. . . . . . . . . 10
| |
| 4 | 3 | ad3antrrr 492 |
. . . . . . . . 9
|
| 5 | lgscl 15265 |
. . . . . . . . 9
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . . . . . 8
|
| 7 | 6 | zred 9450 |
. . . . . . 7
|
| 8 | absresq 11245 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | 2, 4 | gcdcomd 12151 |
. . . . . . . . . 10
|
| 11 | simpr 110 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | eqtrd 2229 |
. . . . . . . . 9
|
| 13 | lgsabs1 15290 |
. . . . . . . . . 10
| |
| 14 | 2, 4, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | 12, 14 | mpbird 167 |
. . . . . . . 8
|
| 16 | 15 | oveq1d 5938 |
. . . . . . 7
|
| 17 | sq1 10727 |
. . . . . . 7
| |
| 18 | 16, 17 | eqtrdi 2245 |
. . . . . 6
|
| 19 | 6 | zcnd 9451 |
. . . . . . 7
|
| 20 | 19 | sqvald 10764 |
. . . . . 6
|
| 21 | 9, 18, 20 | 3eqtr3d 2237 |
. . . . 5
|
| 22 | 21 | oveq2d 5939 |
. . . 4
|
| 23 | lgscl 15265 |
. . . . . . 7
| |
| 24 | 4, 2, 23 | syl2anc 411 |
. . . . . 6
|
| 25 | 24 | zcnd 9451 |
. . . . 5
|
| 26 | 25, 19, 19 | mulassd 8052 |
. . . 4
|
| 27 | 22, 26 | eqtr4d 2232 |
. . 3
|
| 28 | 25 | mulridd 8045 |
. . 3
|
| 29 | simplll 533 |
. . . . 5
| |
| 30 | simpllr 534 |
. . . . 5
| |
| 31 | simplrr 536 |
. . . . 5
| |
| 32 | 29, 30, 1, 31, 11 | lgsquad2 15334 |
. . . 4
|
| 33 | 32 | oveq1d 5938 |
. . 3
|
| 34 | 27, 28, 33 | 3eqtr3d 2237 |
. 2
|
| 35 | neg1cn 9097 |
. . . . . 6
| |
| 36 | 35 | a1i 9 |
. . . . 5
|
| 37 | neg1ap0 9101 |
. . . . . 6
| |
| 38 | 37 | a1i 9 |
. . . . 5
|
| 39 | 3 | ad3antrrr 492 |
. . . . . . . 8
|
| 40 | simpllr 534 |
. . . . . . . 8
| |
| 41 | 1zzd 9355 |
. . . . . . . 8
| |
| 42 | 2prm 12305 |
. . . . . . . . 9
| |
| 43 | nprmdvds1 12318 |
. . . . . . . . 9
| |
| 44 | 42, 43 | mp1i 10 |
. . . . . . . 8
|
| 45 | omoe 12063 |
. . . . . . . 8
| |
| 46 | 39, 40, 41, 44, 45 | syl22anc 1250 |
. . . . . . 7
|
| 47 | 2z 9356 |
. . . . . . . 8
| |
| 48 | 2ne0 9084 |
. . . . . . . 8
| |
| 49 | peano2zm 9366 |
. . . . . . . . 9
| |
| 50 | 39, 49 | syl 14 |
. . . . . . . 8
|
| 51 | dvdsval2 11957 |
. . . . . . . 8
| |
| 52 | 47, 48, 50, 51 | mp3an12i 1352 |
. . . . . . 7
|
| 53 | 46, 52 | mpbid 147 |
. . . . . 6
|
| 54 | nnz 9347 |
. . . . . . . . . 10
| |
| 55 | 54 | adantr 276 |
. . . . . . . . 9
|
| 56 | 55 | ad2antlr 489 |
. . . . . . . 8
|
| 57 | simplrr 536 |
. . . . . . . 8
| |
| 58 | omoe 12063 |
. . . . . . . 8
| |
| 59 | 56, 57, 41, 44, 58 | syl22anc 1250 |
. . . . . . 7
|
| 60 | peano2zm 9366 |
. . . . . . . . 9
| |
| 61 | 56, 60 | syl 14 |
. . . . . . . 8
|
| 62 | dvdsval2 11957 |
. . . . . . . 8
| |
| 63 | 47, 48, 61, 62 | mp3an12i 1352 |
. . . . . . 7
|
| 64 | 59, 63 | mpbid 147 |
. . . . . 6
|
| 65 | 53, 64 | zmulcld 9456 |
. . . . 5
|
| 66 | 36, 38, 65 | expclzapd 10772 |
. . . 4
|
| 67 | 66 | mul01d 8421 |
. . 3
|
| 68 | 54, 3, 5 | syl2anr 290 |
. . . . . . . 8
|
| 69 | 0zd 9340 |
. . . . . . . 8
| |
| 70 | zdceq 9403 |
. . . . . . . 8
| |
| 71 | 68, 69, 70 | syl2anc 411 |
. . . . . . 7
|
| 72 | lgsne0 15289 |
. . . . . . . . . . 11
| |
| 73 | gcdcom 12150 |
. . . . . . . . . . . 12
| |
| 74 | 73 | eqeq1d 2205 |
. . . . . . . . . . 11
|
| 75 | 72, 74 | bitrd 188 |
. . . . . . . . . 10
|
| 76 | 54, 3, 75 | syl2anr 290 |
. . . . . . . . 9
|
| 77 | 76 | a1d 22 |
. . . . . . . 8
|
| 78 | 77 | necon1bbiddc 2430 |
. . . . . . 7
|
| 79 | 71, 78 | mpd 13 |
. . . . . 6
|
| 80 | 79 | ad2ant2r 509 |
. . . . 5
|
| 81 | 80 | biimpa 296 |
. . . 4
|
| 82 | 81 | oveq2d 5939 |
. . 3
|
| 83 | 0zd 9340 |
. . . . . . . 8
| |
| 84 | zdceq 9403 |
. . . . . . . 8
| |
| 85 | 23, 83, 84 | syl2anc 411 |
. . . . . . 7
|
| 86 | lgsne0 15289 |
. . . . . . . . 9
| |
| 87 | 86 | a1d 22 |
. . . . . . . 8
|
| 88 | 87 | necon1bbiddc 2430 |
. . . . . . 7
|
| 89 | 85, 88 | mpd 13 |
. . . . . 6
|
| 90 | 3, 54, 89 | syl2an 289 |
. . . . 5
|
| 91 | 90 | ad2ant2r 509 |
. . . 4
|
| 92 | 91 | biimpa 296 |
. . 3
|
| 93 | 67, 82, 92 | 3eqtr4rd 2240 |
. 2
|
| 94 | gcdnncl 12144 |
. . . . . 6
| |
| 95 | 94 | ad2ant2r 509 |
. . . . 5
|
| 96 | 95 | nnzd 9449 |
. . . 4
|
| 97 | 1zzd 9355 |
. . . 4
| |
| 98 | zdceq 9403 |
. . . 4
| |
| 99 | 96, 97, 98 | syl2anc 411 |
. . 3
|
| 100 | exmiddc 837 |
. . 3
| |
| 101 | 99, 100 | syl 14 |
. 2
|
| 102 | 34, 93, 101 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 ax-caucvg 8001 ax-addf 8003 ax-mulf 8004 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-of 6136 df-1st 6199 df-2nd 6200 df-tpos 6304 df-recs 6364 df-irdg 6429 df-frec 6450 df-1o 6475 df-2o 6476 df-oadd 6479 df-er 6593 df-ec 6595 df-qs 6599 df-map 6710 df-en 6801 df-dom 6802 df-fin 6803 df-sup 7051 df-inf 7052 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-9 9058 df-n0 9252 df-z 9329 df-dec 9460 df-uz 9604 df-q 9696 df-rp 9731 df-fz 10086 df-fzo 10220 df-fl 10362 df-mod 10417 df-seqfrec 10542 df-exp 10633 df-ihash 10870 df-cj 11009 df-re 11010 df-im 11011 df-rsqrt 11165 df-abs 11166 df-clim 11446 df-sumdc 11521 df-proddc 11718 df-dvds 11955 df-gcd 12131 df-prm 12286 df-phi 12389 df-pc 12464 df-struct 12690 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-mulr 12779 df-starv 12780 df-sca 12781 df-vsca 12782 df-ip 12783 df-tset 12784 df-ple 12785 df-ds 12787 df-unif 12788 df-0g 12939 df-igsum 12940 df-topgen 12941 df-iimas 12955 df-qus 12956 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-mhm 13101 df-submnd 13102 df-grp 13145 df-minusg 13146 df-sbg 13147 df-mulg 13260 df-subg 13310 df-nsg 13311 df-eqg 13312 df-ghm 13381 df-cmn 13426 df-abl 13427 df-mgp 13487 df-rng 13499 df-ur 13526 df-srg 13530 df-ring 13564 df-cring 13565 df-oppr 13634 df-dvdsr 13655 df-unit 13656 df-invr 13687 df-dvr 13698 df-rhm 13718 df-nzr 13746 df-subrg 13785 df-domn 13825 df-idom 13826 df-lmod 13855 df-lssm 13919 df-lsp 13953 df-sra 14001 df-rgmod 14002 df-lidl 14035 df-rsp 14036 df-2idl 14066 df-bl 14112 df-mopn 14113 df-fg 14115 df-metu 14116 df-cnfld 14123 df-zring 14157 df-zrh 14180 df-zn 14182 df-lgs 15249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |