ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad3 Unicode version

Theorem lgsquad3 15433
Description: Extend lgsquad2 15432 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad3  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  /L
N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )

Proof of Theorem lgsquad3
StepHypRef Expression
1 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
21nnzd 9466 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
3 nnz 9364 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  ZZ )
43ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
5 lgscl 15363 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  /L
M )  e.  ZZ )
62, 4, 5syl2anc 411 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  ZZ )
76zred 9467 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  RR )
8 absresq 11262 . . . . . . 7  |-  ( ( N  /L M )  e.  RR  ->  ( ( abs `  ( N  /L M ) ) ^ 2 )  =  ( ( N  /L M ) ^ 2 ) )
97, 8syl 14 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  ( ( N  /L
M ) ^ 2 ) )
102, 4gcdcomd 12168 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N ) )
11 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
1210, 11eqtrd 2229 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
13 lgsabs1 15388 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  ( N  /L M ) )  =  1  <->  ( N  gcd  M )  =  1 ) )
142, 4, 13syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) )  =  1  <->  ( N  gcd  M )  =  1 ) )
1512, 14mpbird 167 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( abs `  ( N  /L M ) )  =  1 )
1615oveq1d 5940 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  ( 1 ^ 2 ) )
17 sq1 10744 . . . . . . 7  |-  ( 1 ^ 2 )  =  1
1816, 17eqtrdi 2245 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  1 )
196zcnd 9468 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  CC )
2019sqvald 10781 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( N  /L M ) ^ 2 )  =  ( ( N  /L M )  x.  ( N  /L
M ) ) )
219, 18, 203eqtr3d 2237 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  1  =  ( ( N  /L
M )  x.  ( N  /L M ) ) )
2221oveq2d 5941 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( ( M  /L N )  x.  ( ( N  /L M )  x.  ( N  /L
M ) ) ) )
23 lgscl 15363 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  /L
N )  e.  ZZ )
244, 2, 23syl2anc 411 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  e.  ZZ )
2524zcnd 9468 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  e.  CC )
2625, 19, 19mulassd 8069 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) )  =  ( ( M  /L N )  x.  ( ( N  /L M )  x.  ( N  /L M ) ) ) )
2722, 26eqtr4d 2232 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) ) )
2825mulridd 8062 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( M  /L
N ) )
29 simplll 533 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  M  e.  NN )
30 simpllr 534 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  -.  2  ||  M )
31 simplrr 536 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  -.  2  ||  N )
3229, 30, 1, 31, 11lgsquad2 15432 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
3332oveq1d 5940 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) )  =  ( (
-u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )
3427, 28, 333eqtr3d 2237 . 2  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  x.  ( N  /L
M ) ) )
35 neg1cn 9114 . . . . . 6  |-  -u 1  e.  CC
3635a1i 9 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -u 1  e.  CC )
37 neg1ap0 9118 . . . . . 6  |-  -u 1 #  0
3837a1i 9 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -u 1 #  0 )
393ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
40 simpllr 534 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  M )
41 1zzd 9372 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  1  e.  ZZ )
42 2prm 12322 . . . . . . . . 9  |-  2  e.  Prime
43 nprmdvds1 12335 . . . . . . . . 9  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
4442, 43mp1i 10 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  1 )
45 omoe 12080 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\ 
-.  2  ||  M
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( M  -  1 ) )
4639, 40, 41, 44, 45syl22anc 1250 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  ||  ( M  -  1 ) )
47 2z 9373 . . . . . . . 8  |-  2  e.  ZZ
48 2ne0 9101 . . . . . . . 8  |-  2  =/=  0
49 peano2zm 9383 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
5039, 49syl 14 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  -  1 )  e.  ZZ )
51 dvdsval2 11974 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( M  -  1 )  e.  ZZ )  -> 
( 2  ||  ( M  -  1 )  <-> 
( ( M  - 
1 )  /  2
)  e.  ZZ ) )
5247, 48, 50, 51mp3an12i 1352 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
2  ||  ( M  -  1 )  <->  ( ( M  -  1 )  /  2 )  e.  ZZ ) )
5346, 52mpbid 147 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( M  -  1 )  /  2 )  e.  ZZ )
54 nnz 9364 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
5554adantr 276 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  ZZ )
5655ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
57 simplrr 536 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  N )
58 omoe 12080 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
5956, 57, 41, 44, 58syl22anc 1250 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  ||  ( N  -  1 ) )
60 peano2zm 9383 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
6156, 60syl 14 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( N  -  1 )  e.  ZZ )
62 dvdsval2 11974 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
6347, 48, 61, 62mp3an12i 1352 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
2  ||  ( N  -  1 )  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
6459, 63mpbid 147 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( N  -  1 )  /  2 )  e.  ZZ )
6553, 64zmulcld 9473 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  e.  ZZ )
6636, 38, 65expclzapd 10789 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  e.  CC )
6766mul01d 8438 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( -u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  0 )  =  0 )
6854, 3, 5syl2anr 290 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /L
M )  e.  ZZ )
69 0zd 9357 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  e.  ZZ )
70 zdceq 9420 . . . . . . . 8  |-  ( ( ( N  /L
M )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( N  /L
M )  =  0 )
7168, 69, 70syl2anc 411 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  -> DECID  ( N  /L M )  =  0 )
72 lgsne0 15387 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  /L M )  =/=  0  <->  ( N  gcd  M )  =  1 ) )
73 gcdcom 12167 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
7473eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  gcd  M )  =  1  <->  ( M  gcd  N )  =  1 ) )
7572, 74bitrd 188 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
7654, 3, 75syl2anr 290 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
7776a1d 22 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  (DECID  ( N  /L
M )  =  0  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) ) )
7877necon1bbiddc 2430 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  (DECID  ( N  /L
M )  =  0  ->  ( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) ) )
7971, 78mpd 13 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) )
8079ad2ant2r 509 . . . . 5  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) )
8180biimpa 296 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  =  0 )
8281oveq2d 5941 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( -u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) )  =  ( (
-u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  0 ) )
83 0zd 9357 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
84 zdceq 9420 . . . . . . . 8  |-  ( ( ( M  /L
N )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( M  /L
N )  =  0 )
8523, 83, 84syl2anc 411 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  /L N )  =  0 )
86 lgsne0 15387 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  /L N )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
8786a1d 22 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (DECID  ( M  /L
N )  =  0  ->  ( ( M  /L N )  =/=  0  <->  ( M  gcd  N )  =  1 ) ) )
8887necon1bbiddc 2430 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (DECID  ( M  /L
N )  =  0  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) ) )
8985, 88mpd 13 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
903, 54, 89syl2an 289 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
9190ad2ant2r 509 . . . 4  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
9291biimpa 296 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  0 )
9367, 82, 923eqtr4rd 2240 . 2  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  x.  ( N  /L M ) ) )
94 gcdnncl 12161 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
9594ad2ant2r 509 . . . . 5  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  gcd  N
)  e.  NN )
9695nnzd 9466 . . . 4  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  gcd  N
)  e.  ZZ )
97 1zzd 9372 . . . 4  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
1  e.  ZZ )
98 zdceq 9420 . . . 4  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( M  gcd  N )  =  1 )
9996, 97, 98syl2anc 411 . . 3  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> DECID  ( M  gcd  N )  =  1 )
100 exmiddc 837 . . 3  |-  (DECID  ( M  gcd  N )  =  1  ->  ( ( M  gcd  N )  =  1  \/  -.  ( M  gcd  N )  =  1 ) )
10199, 100syl 14 . 2  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( ( M  gcd  N )  =  1  \/ 
-.  ( M  gcd  N )  =  1 ) )
10234, 93, 101mpjaodan 799 1  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  /L
N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    x. cmul 7903    - cmin 8216   -ucneg 8217   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   ZZcz 9345   ^cexp 10649   abscabs 11181    || cdvds 11971    gcd cgcd 12147   Primecprime 12302    /Lclgs 15346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-proddc 11735  df-dvds 11972  df-gcd 12148  df-prm 12303  df-phi 12406  df-pc 12481  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-igsum 12963  df-topgen 12964  df-iimas 13006  df-qus 13007  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mhm 13163  df-submnd 13164  df-grp 13207  df-minusg 13208  df-sbg 13209  df-mulg 13328  df-subg 13378  df-nsg 13379  df-eqg 13380  df-ghm 13449  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-ur 13594  df-srg 13598  df-ring 13632  df-cring 13633  df-oppr 13702  df-dvdsr 13723  df-unit 13724  df-invr 13755  df-dvr 13766  df-rhm 13786  df-nzr 13814  df-subrg 13853  df-domn 13893  df-idom 13894  df-lmod 13923  df-lssm 13987  df-lsp 14021  df-sra 14069  df-rgmod 14070  df-lidl 14103  df-rsp 14104  df-2idl 14134  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225  df-zrh 14248  df-zn 14250  df-lgs 15347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator