| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqlem18 | Unicode version | ||
| Description: Lemma for 4sq 12766. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| Ref | Expression |
|---|---|
| 4sqlem11.1 |
|
| 4sq.2 |
|
| 4sq.3 |
|
| 4sq.4 |
|
| 4sq.5 |
|
| 4sq.6 |
|
| 4sq.7 |
|
| Ref | Expression |
|---|---|
| 4sqlem18 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.4 |
. . . . 5
| |
| 2 | prmnn 12465 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | 3 | nncnd 9052 |
. . 3
|
| 5 | 4 | mullidd 8092 |
. 2
|
| 6 | 4sq.7 |
. . . . . . . . . . . 12
| |
| 7 | 4sqlem11.1 |
. . . . . . . . . . . . . . 15
| |
| 8 | 4sq.2 |
. . . . . . . . . . . . . . 15
| |
| 9 | 4sq.3 |
. . . . . . . . . . . . . . 15
| |
| 10 | 4sq.5 |
. . . . . . . . . . . . . . 15
| |
| 11 | 4sq.6 |
. . . . . . . . . . . . . . 15
| |
| 12 | 7, 8, 9, 1, 10, 11, 6 | 4sqlem13m 12759 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | simpld 112 |
. . . . . . . . . . . . 13
|
| 14 | 1zzd 9401 |
. . . . . . . . . . . . . 14
| |
| 15 | nnuz 9686 |
. . . . . . . . . . . . . . . 16
| |
| 16 | 15 | rabeqi 2765 |
. . . . . . . . . . . . . . 15
|
| 17 | 11, 16 | eqtri 2226 |
. . . . . . . . . . . . . 14
|
| 18 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 19 | elfznn 10178 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 19 | adantl 277 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 3 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
|
| 22 | 20, 21 | nnmulcld 9087 |
. . . . . . . . . . . . . . . 16
|
| 23 | 22 | nnnn0d 9350 |
. . . . . . . . . . . . . . 15
|
| 24 | 7 | 4sqlemsdc 12756 |
. . . . . . . . . . . . . . 15
|
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . . . . 14
|
| 26 | 14, 17, 18, 25 | infssuzcldc 10380 |
. . . . . . . . . . . . 13
|
| 27 | 13, 26 | exlimddv 1922 |
. . . . . . . . . . . 12
|
| 28 | 6, 27 | eqeltrid 2292 |
. . . . . . . . . . 11
|
| 29 | oveq1 5953 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | eleq1d 2274 |
. . . . . . . . . . . 12
|
| 31 | 30, 11 | elrab2 2932 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | sylib 122 |
. . . . . . . . . 10
|
| 33 | 32 | simprd 114 |
. . . . . . . . 9
|
| 34 | 7 | 4sqlem2 12745 |
. . . . . . . . 9
|
| 35 | 33, 34 | sylib 122 |
. . . . . . . 8
|
| 36 | 35 | adantr 276 |
. . . . . . 7
|
| 37 | simp1l 1024 |
. . . . . . . . . . . . . 14
| |
| 38 | 37, 8 | syl 14 |
. . . . . . . . . . . . 13
|
| 39 | 37, 9 | syl 14 |
. . . . . . . . . . . . 13
|
| 40 | 37, 1 | syl 14 |
. . . . . . . . . . . . 13
|
| 41 | 37, 10 | syl 14 |
. . . . . . . . . . . . 13
|
| 42 | simp1r 1025 |
. . . . . . . . . . . . 13
| |
| 43 | simp2ll 1067 |
. . . . . . . . . . . . 13
| |
| 44 | simp2lr 1068 |
. . . . . . . . . . . . 13
| |
| 45 | simp2rl 1069 |
. . . . . . . . . . . . 13
| |
| 46 | simp2rr 1070 |
. . . . . . . . . . . . 13
| |
| 47 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 48 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 49 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 50 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 51 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 52 | simp3 1002 |
. . . . . . . . . . . . 13
| |
| 53 | 7, 38, 39, 40, 41, 11, 6, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 | 4sqlem17 12763 |
. . . . . . . . . . . 12
|
| 54 | 53 | pm2.21i 647 |
. . . . . . . . . . 11
|
| 55 | 54 | 3expia 1208 |
. . . . . . . . . 10
|
| 56 | 55 | anassrs 400 |
. . . . . . . . 9
|
| 57 | 56 | rexlimdvva 2631 |
. . . . . . . 8
|
| 58 | 57 | rexlimdvva 2631 |
. . . . . . 7
|
| 59 | 36, 58 | mpd 13 |
. . . . . 6
|
| 60 | 59 | pm2.01da 637 |
. . . . 5
|
| 61 | 32 | simpld 112 |
. . . . . 6
|
| 62 | elnn1uz2 9730 |
. . . . . 6
| |
| 63 | 61, 62 | sylib 122 |
. . . . 5
|
| 64 | 60, 63 | ecased 1362 |
. . . 4
|
| 65 | 64, 28 | eqeltrrd 2283 |
. . 3
|
| 66 | oveq1 5953 |
. . . . . 6
| |
| 67 | 66 | eleq1d 2274 |
. . . . 5
|
| 68 | 67, 11 | elrab2 2932 |
. . . 4
|
| 69 | 68 | simprbi 275 |
. . 3
|
| 70 | 65, 69 | syl 14 |
. 2
|
| 71 | 5, 70 | eqeltrrd 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-2o 6505 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-fz 10133 df-fzo 10267 df-fl 10415 df-mod 10470 df-seqfrec 10595 df-exp 10686 df-ihash 10923 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-dvds 12132 df-gcd 12308 df-prm 12463 df-gz 12726 |
| This theorem is referenced by: 4sqlem19 12765 |
| Copyright terms: Public domain | W3C validator |