ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcn Unicode version

Theorem expcn 15085
Description: The power function on complex numbers, for fixed exponent 
N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8055. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
expcn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
expcn  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Distinct variable groups:    x, J    x, N

Proof of Theorem expcn
Dummy variables  k  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5959 . . . 4  |-  ( n  =  0  ->  (
x ^ n )  =  ( x ^
0 ) )
21mpteq2dv 4139 . . 3  |-  ( n  =  0  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2275 . 2  |-  ( n  =  0  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J ) ) )
4 oveq2 5959 . . . 4  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
54mpteq2dv 4139 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2275 . 2  |-  ( n  =  k  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) ) )
7 oveq2 5959 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4139 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2275 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
10 oveq2 5959 . . . 4  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
1110mpteq2dv 4139 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2275 . 2  |-  ( n  =  N  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ N
) )  e.  ( J  Cn  J ) ) )
13 exp0 10695 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4134 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 expcn.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
1615cnfldtopon 15056 . . . . . 6  |-  J  e.  (TopOn `  CC )
1716a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  CC ) )
18 1cnd 8095 . . . . 5  |-  ( T. 
->  1  e.  CC )
1917, 17, 18cnmptc 14798 . . . 4  |-  ( T. 
->  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J ) )
2019mptru 1382 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J )
2114, 20eqeltri 2279 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J )
22 oveq1 5958 . . . . . 6  |-  ( x  =  n  ->  (
x ^ ( k  +  1 ) )  =  ( n ^
( k  +  1 ) ) )
2322cbvmptv 4144 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )
24 id 19 . . . . . . 7  |-  ( n  e.  CC  ->  n  e.  CC )
25 simpl 109 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  k  e.  NN0 )
26 expp1 10698 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k )  x.  n ) )
27 expcl 10709 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ k
)  e.  CC )
28 simpl 109 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  ->  n  e.  CC )
2927, 28mulcld 8100 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k )  x.  n
)  e.  CC )
30 oveq1 5958 . . . . . . . . . 10  |-  ( u  =  ( n ^
k )  ->  (
u  x.  v )  =  ( ( n ^ k )  x.  v ) )
31 oveq2 5959 . . . . . . . . . 10  |-  ( v  =  n  ->  (
( n ^ k
)  x.  v )  =  ( ( n ^ k )  x.  n ) )
32 eqid 2206 . . . . . . . . . 10  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
3330, 31, 32ovmpog 6087 . . . . . . . . 9  |-  ( ( ( n ^ k
)  e.  CC  /\  n  e.  CC  /\  (
( n ^ k
)  x.  n )  e.  CC )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3427, 28, 29, 33syl3anc 1250 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3526, 34eqtr4d 2242 . . . . . . 7  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v
) ) n ) )
3624, 25, 35syl2anr 290 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  /\  n  e.  CC )  ->  (
n ^ ( k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )
3736mpteq2dva 4138 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3823, 37eqtrid 2251 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3916a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  J  e.  (TopOn `  CC ) )
40 oveq1 5958 . . . . . . 7  |-  ( x  =  n  ->  (
x ^ k )  =  ( n ^
k ) )
4140cbvmptv 4144 . . . . . 6  |-  ( x  e.  CC  |->  ( x ^ k ) )  =  ( n  e.  CC  |->  ( n ^
k ) )
42 simpr 110 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( J  Cn  J
) )
4341, 42eqeltrrid 2294 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
k ) )  e.  ( J  Cn  J
) )
4439cnmptid 14797 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  n )  e.  ( J  Cn  J
) )
4515mpomulcn 15082 . . . . . 6  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J 
tX  J )  Cn  J )
4645a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J  tX  J )  Cn  J
) )
4739, 43, 44, 46cnmpt12f 14802 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )  e.  ( J  Cn  J ) )
4838, 47eqeltrd 2283 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( J  Cn  J
) )
4948ex 115 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( J  Cn  J )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
503, 6, 9, 12, 21, 49nn0ind 9494 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   T. wtru 1374    e. wcel 2177    |-> cmpt 4109   ` cfv 5276  (class class class)co 5951    e. cmpo 5953   CCcc 7930   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937   NN0cn0 9302   ^cexp 10690   TopOpenctopn 13116  ℂfldccnfld 14362  TopOnctopon 14526    Cn ccn 14701    tX ctx 14768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-fz 10138  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-starv 12968  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-rest 13117  df-topn 13118  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363  df-top 14514  df-topon 14527  df-topsp 14547  df-bases 14559  df-cn 14704  df-cnp 14705  df-tx 14769  df-xms 14855  df-ms 14856
This theorem is referenced by:  plycn  15278
  Copyright terms: Public domain W3C validator