ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcn Unicode version

Theorem expcn 14748
Description: The power function on complex numbers, for fixed exponent 
N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 7997. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
expcn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
expcn  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Distinct variable groups:    x, J    x, N

Proof of Theorem expcn
Dummy variables  k  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5927 . . . 4  |-  ( n  =  0  ->  (
x ^ n )  =  ( x ^
0 ) )
21mpteq2dv 4121 . . 3  |-  ( n  =  0  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2262 . 2  |-  ( n  =  0  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J ) ) )
4 oveq2 5927 . . . 4  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
54mpteq2dv 4121 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2262 . 2  |-  ( n  =  k  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) ) )
7 oveq2 5927 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4121 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2262 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
10 oveq2 5927 . . . 4  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
1110mpteq2dv 4121 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2262 . 2  |-  ( n  =  N  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ N
) )  e.  ( J  Cn  J ) ) )
13 exp0 10617 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4116 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 expcn.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
1615cnfldtopon 14719 . . . . . 6  |-  J  e.  (TopOn `  CC )
1716a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  CC ) )
18 1cnd 8037 . . . . 5  |-  ( T. 
->  1  e.  CC )
1917, 17, 18cnmptc 14461 . . . 4  |-  ( T. 
->  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J ) )
2019mptru 1373 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J )
2114, 20eqeltri 2266 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J )
22 oveq1 5926 . . . . . 6  |-  ( x  =  n  ->  (
x ^ ( k  +  1 ) )  =  ( n ^
( k  +  1 ) ) )
2322cbvmptv 4126 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )
24 id 19 . . . . . . 7  |-  ( n  e.  CC  ->  n  e.  CC )
25 simpl 109 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  k  e.  NN0 )
26 expp1 10620 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k )  x.  n ) )
27 expcl 10631 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ k
)  e.  CC )
28 simpl 109 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  ->  n  e.  CC )
2927, 28mulcld 8042 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k )  x.  n
)  e.  CC )
30 oveq1 5926 . . . . . . . . . 10  |-  ( u  =  ( n ^
k )  ->  (
u  x.  v )  =  ( ( n ^ k )  x.  v ) )
31 oveq2 5927 . . . . . . . . . 10  |-  ( v  =  n  ->  (
( n ^ k
)  x.  v )  =  ( ( n ^ k )  x.  n ) )
32 eqid 2193 . . . . . . . . . 10  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
3330, 31, 32ovmpog 6054 . . . . . . . . 9  |-  ( ( ( n ^ k
)  e.  CC  /\  n  e.  CC  /\  (
( n ^ k
)  x.  n )  e.  CC )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3427, 28, 29, 33syl3anc 1249 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3526, 34eqtr4d 2229 . . . . . . 7  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v
) ) n ) )
3624, 25, 35syl2anr 290 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  /\  n  e.  CC )  ->  (
n ^ ( k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )
3736mpteq2dva 4120 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3823, 37eqtrid 2238 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3916a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  J  e.  (TopOn `  CC ) )
40 oveq1 5926 . . . . . . 7  |-  ( x  =  n  ->  (
x ^ k )  =  ( n ^
k ) )
4140cbvmptv 4126 . . . . . 6  |-  ( x  e.  CC  |->  ( x ^ k ) )  =  ( n  e.  CC  |->  ( n ^
k ) )
42 simpr 110 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( J  Cn  J
) )
4341, 42eqeltrrid 2281 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
k ) )  e.  ( J  Cn  J
) )
4439cnmptid 14460 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  n )  e.  ( J  Cn  J
) )
4515mpomulcn 14745 . . . . . 6  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J 
tX  J )  Cn  J )
4645a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J  tX  J )  Cn  J
) )
4739, 43, 44, 46cnmpt12f 14465 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )  e.  ( J  Cn  J ) )
4838, 47eqeltrd 2270 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( J  Cn  J
) )
4948ex 115 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( J  Cn  J )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
503, 6, 9, 12, 21, 49nn0ind 9434 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2164    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   NN0cn0 9243   ^cexp 10612   TopOpenctopn 12854  ℂfldccnfld 14055  TopOnctopon 14189    Cn ccn 14364    tX ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-fz 10078  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-rest 12855  df-topn 12856  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-top 14177  df-topon 14190  df-topsp 14210  df-bases 14222  df-cn 14367  df-cnp 14368  df-tx 14432  df-xms 14518  df-ms 14519
This theorem is referenced by:  plycn  14932
  Copyright terms: Public domain W3C validator