ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcn Unicode version

Theorem expcn 15228
Description: The power function on complex numbers, for fixed exponent 
N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8110. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
expcn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
expcn  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Distinct variable groups:    x, J    x, N

Proof of Theorem expcn
Dummy variables  k  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6002 . . . 4  |-  ( n  =  0  ->  (
x ^ n )  =  ( x ^
0 ) )
21mpteq2dv 4174 . . 3  |-  ( n  =  0  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2298 . 2  |-  ( n  =  0  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J ) ) )
4 oveq2 6002 . . . 4  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
54mpteq2dv 4174 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2298 . 2  |-  ( n  =  k  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) ) )
7 oveq2 6002 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4174 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2298 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
10 oveq2 6002 . . . 4  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
1110mpteq2dv 4174 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2298 . 2  |-  ( n  =  N  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ N
) )  e.  ( J  Cn  J ) ) )
13 exp0 10752 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4169 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 expcn.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
1615cnfldtopon 15199 . . . . . 6  |-  J  e.  (TopOn `  CC )
1716a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  CC ) )
18 1cnd 8150 . . . . 5  |-  ( T. 
->  1  e.  CC )
1917, 17, 18cnmptc 14941 . . . 4  |-  ( T. 
->  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J ) )
2019mptru 1404 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J )
2114, 20eqeltri 2302 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J )
22 oveq1 6001 . . . . . 6  |-  ( x  =  n  ->  (
x ^ ( k  +  1 ) )  =  ( n ^
( k  +  1 ) ) )
2322cbvmptv 4179 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )
24 id 19 . . . . . . 7  |-  ( n  e.  CC  ->  n  e.  CC )
25 simpl 109 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  k  e.  NN0 )
26 expp1 10755 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k )  x.  n ) )
27 expcl 10766 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ k
)  e.  CC )
28 simpl 109 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  ->  n  e.  CC )
2927, 28mulcld 8155 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k )  x.  n
)  e.  CC )
30 oveq1 6001 . . . . . . . . . 10  |-  ( u  =  ( n ^
k )  ->  (
u  x.  v )  =  ( ( n ^ k )  x.  v ) )
31 oveq2 6002 . . . . . . . . . 10  |-  ( v  =  n  ->  (
( n ^ k
)  x.  v )  =  ( ( n ^ k )  x.  n ) )
32 eqid 2229 . . . . . . . . . 10  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
3330, 31, 32ovmpog 6130 . . . . . . . . 9  |-  ( ( ( n ^ k
)  e.  CC  /\  n  e.  CC  /\  (
( n ^ k
)  x.  n )  e.  CC )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3427, 28, 29, 33syl3anc 1271 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3526, 34eqtr4d 2265 . . . . . . 7  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v
) ) n ) )
3624, 25, 35syl2anr 290 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  /\  n  e.  CC )  ->  (
n ^ ( k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )
3736mpteq2dva 4173 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3823, 37eqtrid 2274 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3916a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  J  e.  (TopOn `  CC ) )
40 oveq1 6001 . . . . . . 7  |-  ( x  =  n  ->  (
x ^ k )  =  ( n ^
k ) )
4140cbvmptv 4179 . . . . . 6  |-  ( x  e.  CC  |->  ( x ^ k ) )  =  ( n  e.  CC  |->  ( n ^
k ) )
42 simpr 110 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( J  Cn  J
) )
4341, 42eqeltrrid 2317 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
k ) )  e.  ( J  Cn  J
) )
4439cnmptid 14940 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  n )  e.  ( J  Cn  J
) )
4515mpomulcn 15225 . . . . . 6  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J 
tX  J )  Cn  J )
4645a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J  tX  J )  Cn  J
) )
4739, 43, 44, 46cnmpt12f 14945 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )  e.  ( J  Cn  J ) )
4838, 47eqeltrd 2306 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( J  Cn  J
) )
4948ex 115 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( J  Cn  J )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
503, 6, 9, 12, 21, 49nn0ind 9549 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994    e. cmpo 5996   CCcc 7985   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992   NN0cn0 9357   ^cexp 10747   TopOpenctopn 13259  ℂfldccnfld 14505  TopOnctopon 14669    Cn ccn 14844    tX ctx 14911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-map 6787  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-fz 10193  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-starv 13111  df-tset 13115  df-ple 13116  df-ds 13118  df-unif 13119  df-rest 13260  df-topn 13261  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-fg 14498  df-metu 14499  df-cnfld 14506  df-top 14657  df-topon 14670  df-topsp 14690  df-bases 14702  df-cn 14847  df-cnp 14848  df-tx 14912  df-xms 14998  df-ms 14999
This theorem is referenced by:  plycn  15421
  Copyright terms: Public domain W3C validator