ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcn Unicode version

Theorem expcn 14805
Description: The power function on complex numbers, for fixed exponent 
N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8002. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
expcn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
expcn  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Distinct variable groups:    x, J    x, N

Proof of Theorem expcn
Dummy variables  k  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . 4  |-  ( n  =  0  ->  (
x ^ n )  =  ( x ^
0 ) )
21mpteq2dv 4124 . . 3  |-  ( n  =  0  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2265 . 2  |-  ( n  =  0  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J ) ) )
4 oveq2 5930 . . . 4  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
54mpteq2dv 4124 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2265 . 2  |-  ( n  =  k  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) ) )
7 oveq2 5930 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4124 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2265 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
10 oveq2 5930 . . . 4  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
1110mpteq2dv 4124 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2265 . 2  |-  ( n  =  N  ->  (
( x  e.  CC  |->  ( x ^ n
) )  e.  ( J  Cn  J )  <-> 
( x  e.  CC  |->  ( x ^ N
) )  e.  ( J  Cn  J ) ) )
13 exp0 10635 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4119 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 expcn.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
1615cnfldtopon 14776 . . . . . 6  |-  J  e.  (TopOn `  CC )
1716a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  CC ) )
18 1cnd 8042 . . . . 5  |-  ( T. 
->  1  e.  CC )
1917, 17, 18cnmptc 14518 . . . 4  |-  ( T. 
->  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J ) )
2019mptru 1373 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( J  Cn  J )
2114, 20eqeltri 2269 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( J  Cn  J )
22 oveq1 5929 . . . . . 6  |-  ( x  =  n  ->  (
x ^ ( k  +  1 ) )  =  ( n ^
( k  +  1 ) ) )
2322cbvmptv 4129 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )
24 id 19 . . . . . . 7  |-  ( n  e.  CC  ->  n  e.  CC )
25 simpl 109 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  k  e.  NN0 )
26 expp1 10638 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k )  x.  n ) )
27 expcl 10649 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ k
)  e.  CC )
28 simpl 109 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  ->  n  e.  CC )
2927, 28mulcld 8047 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k )  x.  n
)  e.  CC )
30 oveq1 5929 . . . . . . . . . 10  |-  ( u  =  ( n ^
k )  ->  (
u  x.  v )  =  ( ( n ^ k )  x.  v ) )
31 oveq2 5930 . . . . . . . . . 10  |-  ( v  =  n  ->  (
( n ^ k
)  x.  v )  =  ( ( n ^ k )  x.  n ) )
32 eqid 2196 . . . . . . . . . 10  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
3330, 31, 32ovmpog 6057 . . . . . . . . 9  |-  ( ( ( n ^ k
)  e.  CC  /\  n  e.  CC  /\  (
( n ^ k
)  x.  n )  e.  CC )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3427, 28, 29, 33syl3anc 1249 . . . . . . . 8  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n )  =  ( ( n ^ k
)  x.  n ) )
3526, 34eqtr4d 2232 . . . . . . 7  |-  ( ( n  e.  CC  /\  k  e.  NN0 )  -> 
( n ^ (
k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v
) ) n ) )
3624, 25, 35syl2anr 290 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  /\  n  e.  CC )  ->  (
n ^ ( k  +  1 ) )  =  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )
3736mpteq2dva 4123 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3823, 37eqtrid 2241 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  =  ( n  e.  CC  |->  ( ( n ^
k ) ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) n ) ) )
3916a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  J  e.  (TopOn `  CC ) )
40 oveq1 5929 . . . . . . 7  |-  ( x  =  n  ->  (
x ^ k )  =  ( n ^
k ) )
4140cbvmptv 4129 . . . . . 6  |-  ( x  e.  CC  |->  ( x ^ k ) )  =  ( n  e.  CC  |->  ( n ^
k ) )
42 simpr 110 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( J  Cn  J
) )
4341, 42eqeltrrid 2284 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( n ^
k ) )  e.  ( J  Cn  J
) )
4439cnmptid 14517 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  n )  e.  ( J  Cn  J
) )
4515mpomulcn 14802 . . . . . 6  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J 
tX  J )  Cn  J )
4645a1i 9 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( J  tX  J )  Cn  J
) )
4739, 43, 44, 46cnmpt12f 14522 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( n  e.  CC  |->  ( ( n ^ k ) ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) n ) )  e.  ( J  Cn  J ) )
4838, 47eqeltrd 2273 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( J  Cn  J ) )  ->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( J  Cn  J
) )
4948ex 115 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( J  Cn  J )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( J  Cn  J ) ) )
503, 6, 9, 12, 21, 49nn0ind 9440 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2167    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   NN0cn0 9249   ^cexp 10630   TopOpenctopn 12911  ℂfldccnfld 14112  TopOnctopon 14246    Cn ccn 14421    tX ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-rest 12912  df-topn 12913  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-top 14234  df-topon 14247  df-topsp 14267  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489  df-xms 14575  df-ms 14576
This theorem is referenced by:  plycn  14998
  Copyright terms: Public domain W3C validator