Step | Hyp | Ref
| Expression |
1 | | oveq2 5927 |
. . . 4
⊢ (𝑛 = 0 → (𝑥↑𝑛) = (𝑥↑0)) |
2 | 1 | mpteq2dv 4121 |
. . 3
⊢ (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
3 | 2 | eleq1d 2262 |
. 2
⊢ (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽))) |
4 | | oveq2 5927 |
. . . 4
⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) |
5 | 4 | mpteq2dv 4121 |
. . 3
⊢ (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
6 | 5 | eleq1d 2262 |
. 2
⊢ (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽))) |
7 | | oveq2 5927 |
. . . 4
⊢ (𝑛 = (𝑘 + 1) → (𝑥↑𝑛) = (𝑥↑(𝑘 + 1))) |
8 | 7 | mpteq2dv 4121 |
. . 3
⊢ (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
9 | 8 | eleq1d 2262 |
. 2
⊢ (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
10 | | oveq2 5927 |
. . . 4
⊢ (𝑛 = 𝑁 → (𝑥↑𝑛) = (𝑥↑𝑁)) |
11 | 10 | mpteq2dv 4121 |
. . 3
⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
12 | 11 | eleq1d 2262 |
. 2
⊢ (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽))) |
13 | | exp0 10617 |
. . . 4
⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) |
14 | 13 | mpteq2ia 4116 |
. . 3
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
15 | | expcn.j |
. . . . . . 7
⊢ 𝐽 =
(TopOpen‘ℂfld) |
16 | 15 | cnfldtopon 14719 |
. . . . . 6
⊢ 𝐽 ∈
(TopOn‘ℂ) |
17 | 16 | a1i 9 |
. . . . 5
⊢ (⊤
→ 𝐽 ∈
(TopOn‘ℂ)) |
18 | | 1cnd 8037 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℂ) |
19 | 17, 17, 18 | cnmptc 14461 |
. . . 4
⊢ (⊤
→ (𝑥 ∈ ℂ
↦ 1) ∈ (𝐽 Cn
𝐽)) |
20 | 19 | mptru 1373 |
. . 3
⊢ (𝑥 ∈ ℂ ↦ 1)
∈ (𝐽 Cn 𝐽) |
21 | 14, 20 | eqeltri 2266 |
. 2
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽) |
22 | | oveq1 5926 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1))) |
23 | 22 | cbvmptv 4126 |
. . . . 5
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) |
24 | | id 19 |
. . . . . . 7
⊢ (𝑛 ∈ ℂ → 𝑛 ∈
ℂ) |
25 | | simpl 109 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0) |
26 | | expp1 10620 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘) · 𝑛)) |
27 | | expcl 10631 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑛↑𝑘) ∈
ℂ) |
28 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ 𝑛 ∈
ℂ) |
29 | 27, 28 | mulcld 8042 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛↑𝑘) · 𝑛) ∈ ℂ) |
30 | | oveq1 5926 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑛↑𝑘) → (𝑢 · 𝑣) = ((𝑛↑𝑘) · 𝑣)) |
31 | | oveq2 5927 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑛 → ((𝑛↑𝑘) · 𝑣) = ((𝑛↑𝑘) · 𝑛)) |
32 | | eqid 2193 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) |
33 | 30, 31, 32 | ovmpog 6054 |
. . . . . . . . 9
⊢ (((𝑛↑𝑘) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ ((𝑛↑𝑘) · 𝑛) ∈ ℂ) → ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) |
34 | 27, 28, 29, 33 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) |
35 | 26, 34 | eqtr4d 2229 |
. . . . . . 7
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) |
36 | 24, 25, 35 | syl2anr 290 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) |
37 | 36 | mpteq2dva 4120 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) |
38 | 23, 37 | eqtrid 2238 |
. . . 4
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) |
39 | 16 | a1i 9 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈
(TopOn‘ℂ)) |
40 | | oveq1 5926 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑥↑𝑘) = (𝑛↑𝑘)) |
41 | 40 | cbvmptv 4126 |
. . . . . 6
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) |
42 | | simpr 110 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) |
43 | 41, 42 | eqeltrrid 2281 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) ∈ (𝐽 Cn 𝐽)) |
44 | 39 | cnmptid 14460 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽)) |
45 | 15 | mpomulcn 14745 |
. . . . . 6
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
46 | 45 | a1i 9 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
47 | 39, 43, 44, 46 | cnmpt12f 14465 |
. . . 4
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) ∈ (𝐽 Cn 𝐽)) |
48 | 38, 47 | eqeltrd 2270 |
. . 3
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)) |
49 | 48 | ex 115 |
. 2
⊢ (𝑘 ∈ ℕ0
→ ((𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
50 | 3, 6, 9, 12, 21, 49 | nn0ind 9434 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈ ℂ
↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |