ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcn GIF version

Theorem expcn 14913
Description: The power function on complex numbers, for fixed exponent 𝑁, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8021. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
expcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
expcn (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁

Proof of Theorem expcn
Dummy variables 𝑘 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . 4 (𝑛 = 0 → (𝑥𝑛) = (𝑥↑0))
21mpteq2dv 4125 . . 3 (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0)))
32eleq1d 2265 . 2 (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽)))
4 oveq2 5933 . . . 4 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
54mpteq2dv 4125 . . 3 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
65eleq1d 2265 . 2 (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)))
7 oveq2 5933 . . . 4 (𝑛 = (𝑘 + 1) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
87mpteq2dv 4125 . . 3 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
98eleq1d 2265 . 2 (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)))
10 oveq2 5933 . . . 4 (𝑛 = 𝑁 → (𝑥𝑛) = (𝑥𝑁))
1110mpteq2dv 4125 . . 3 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
1211eleq1d 2265 . 2 (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (𝐽 Cn 𝐽)))
13 exp0 10654 . . . 4 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
1413mpteq2ia 4120 . . 3 (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1)
15 expcn.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
1615cnfldtopon 14884 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
1716a1i 9 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
18 1cnd 8061 . . . . 5 (⊤ → 1 ∈ ℂ)
1917, 17, 18cnmptc 14626 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
2019mptru 1373 . . 3 (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽)
2114, 20eqeltri 2269 . 2 (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽)
22 oveq1 5932 . . . . . 6 (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1)))
2322cbvmptv 4130 . . . . 5 (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1)))
24 id 19 . . . . . . 7 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
25 simpl 109 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0)
26 expp1 10657 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛𝑘) · 𝑛))
27 expcl 10668 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛𝑘) ∈ ℂ)
28 simpl 109 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ)
2927, 28mulcld 8066 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛𝑘) · 𝑛) ∈ ℂ)
30 oveq1 5932 . . . . . . . . . 10 (𝑢 = (𝑛𝑘) → (𝑢 · 𝑣) = ((𝑛𝑘) · 𝑣))
31 oveq2 5933 . . . . . . . . . 10 (𝑣 = 𝑛 → ((𝑛𝑘) · 𝑣) = ((𝑛𝑘) · 𝑛))
32 eqid 2196 . . . . . . . . . 10 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
3330, 31, 32ovmpog 6061 . . . . . . . . 9 (((𝑛𝑘) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ ((𝑛𝑘) · 𝑛) ∈ ℂ) → ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛𝑘) · 𝑛))
3427, 28, 29, 33syl3anc 1249 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛𝑘) · 𝑛))
3526, 34eqtr4d 2232 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))
3624, 25, 35syl2anr 290 . . . . . 6 (((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))
3736mpteq2dva 4124 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)))
3823, 37eqtrid 2241 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)))
3916a1i 9 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘ℂ))
40 oveq1 5932 . . . . . . 7 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
4140cbvmptv 4130 . . . . . 6 (𝑥 ∈ ℂ ↦ (𝑥𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛𝑘))
42 simpr 110 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽))
4341, 42eqeltrrid 2284 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛𝑘)) ∈ (𝐽 Cn 𝐽))
4439cnmptid 14625 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽))
4515mpomulcn 14910 . . . . . 6 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4645a1i 9 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4739, 43, 44, 46cnmpt12f 14630 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) ∈ (𝐽 Cn 𝐽))
4838, 47eqeltrd 2273 . . 3 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))
4948ex 115 . 2 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)))
503, 6, 9, 12, 21, 49nn0ind 9459 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wtru 1365  wcel 2167  cmpt 4095  cfv 5259  (class class class)co 5925  cmpo 5927  cc 7896  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903  0cn0 9268  cexp 10649  TopOpenctopn 12944  fldccnfld 14190  TopOnctopon 14354   Cn ccn 14529   ×t ctx 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-fz 10103  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-starv 12797  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-rest 12945  df-topn 12946  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-top 14342  df-topon 14355  df-topsp 14375  df-bases 14387  df-cn 14532  df-cnp 14533  df-tx 14597  df-xms 14683  df-ms 14684
This theorem is referenced by:  plycn  15106
  Copyright terms: Public domain W3C validator