| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . 4
⊢ (𝑛 = 0 → (𝑥↑𝑛) = (𝑥↑0)) | 
| 2 | 1 | mpteq2dv 4124 | 
. . 3
⊢ (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) | 
| 3 | 2 | eleq1d 2265 | 
. 2
⊢ (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽))) | 
| 4 |   | oveq2 5930 | 
. . . 4
⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) | 
| 5 | 4 | mpteq2dv 4124 | 
. . 3
⊢ (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) | 
| 6 | 5 | eleq1d 2265 | 
. 2
⊢ (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽))) | 
| 7 |   | oveq2 5930 | 
. . . 4
⊢ (𝑛 = (𝑘 + 1) → (𝑥↑𝑛) = (𝑥↑(𝑘 + 1))) | 
| 8 | 7 | mpteq2dv 4124 | 
. . 3
⊢ (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) | 
| 9 | 8 | eleq1d 2265 | 
. 2
⊢ (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) | 
| 10 |   | oveq2 5930 | 
. . . 4
⊢ (𝑛 = 𝑁 → (𝑥↑𝑛) = (𝑥↑𝑁)) | 
| 11 | 10 | mpteq2dv 4124 | 
. . 3
⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | 
| 12 | 11 | eleq1d 2265 | 
. 2
⊢ (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽))) | 
| 13 |   | exp0 10635 | 
. . . 4
⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | 
| 14 | 13 | mpteq2ia 4119 | 
. . 3
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) | 
| 15 |   | expcn.j | 
. . . . . . 7
⊢ 𝐽 =
(TopOpen‘ℂfld) | 
| 16 | 15 | cnfldtopon 14776 | 
. . . . . 6
⊢ 𝐽 ∈
(TopOn‘ℂ) | 
| 17 | 16 | a1i 9 | 
. . . . 5
⊢ (⊤
→ 𝐽 ∈
(TopOn‘ℂ)) | 
| 18 |   | 1cnd 8042 | 
. . . . 5
⊢ (⊤
→ 1 ∈ ℂ) | 
| 19 | 17, 17, 18 | cnmptc 14518 | 
. . . 4
⊢ (⊤
→ (𝑥 ∈ ℂ
↦ 1) ∈ (𝐽 Cn
𝐽)) | 
| 20 | 19 | mptru 1373 | 
. . 3
⊢ (𝑥 ∈ ℂ ↦ 1)
∈ (𝐽 Cn 𝐽) | 
| 21 | 14, 20 | eqeltri 2269 | 
. 2
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽) | 
| 22 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1))) | 
| 23 | 22 | cbvmptv 4129 | 
. . . . 5
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) | 
| 24 |   | id 19 | 
. . . . . . 7
⊢ (𝑛 ∈ ℂ → 𝑛 ∈
ℂ) | 
| 25 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0) | 
| 26 |   | expp1 10638 | 
. . . . . . . 8
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘) · 𝑛)) | 
| 27 |   | expcl 10649 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑛↑𝑘) ∈
ℂ) | 
| 28 |   | simpl 109 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ 𝑛 ∈
ℂ) | 
| 29 | 27, 28 | mulcld 8047 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛↑𝑘) · 𝑛) ∈ ℂ) | 
| 30 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑢 = (𝑛↑𝑘) → (𝑢 · 𝑣) = ((𝑛↑𝑘) · 𝑣)) | 
| 31 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ (𝑣 = 𝑛 → ((𝑛↑𝑘) · 𝑣) = ((𝑛↑𝑘) · 𝑛)) | 
| 32 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | 
| 33 | 30, 31, 32 | ovmpog 6057 | 
. . . . . . . . 9
⊢ (((𝑛↑𝑘) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ ((𝑛↑𝑘) · 𝑛) ∈ ℂ) → ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) | 
| 34 | 27, 28, 29, 33 | syl3anc 1249 | 
. . . . . . . 8
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) | 
| 35 | 26, 34 | eqtr4d 2232 | 
. . . . . . 7
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) | 
| 36 | 24, 25, 35 | syl2anr 290 | 
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) | 
| 37 | 36 | mpteq2dva 4123 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) | 
| 38 | 23, 37 | eqtrid 2241 | 
. . . 4
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) | 
| 39 | 16 | a1i 9 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈
(TopOn‘ℂ)) | 
| 40 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑥↑𝑘) = (𝑛↑𝑘)) | 
| 41 | 40 | cbvmptv 4129 | 
. . . . . 6
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) | 
| 42 |   | simpr 110 | 
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) | 
| 43 | 41, 42 | eqeltrrid 2284 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) ∈ (𝐽 Cn 𝐽)) | 
| 44 | 39 | cnmptid 14517 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽)) | 
| 45 | 15 | mpomulcn 14802 | 
. . . . . 6
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | 
| 46 | 45 | a1i 9 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | 
| 47 | 39, 43, 44, 46 | cnmpt12f 14522 | 
. . . 4
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) ∈ (𝐽 Cn 𝐽)) | 
| 48 | 38, 47 | eqeltrd 2273 | 
. . 3
⊢ ((𝑘 ∈ ℕ0
∧ (𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)) | 
| 49 | 48 | ex 115 | 
. 2
⊢ (𝑘 ∈ ℕ0
→ ((𝑥 ∈ ℂ
↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) | 
| 50 | 3, 6, 9, 12, 21, 49 | nn0ind 9440 | 
1
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈ ℂ
↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |