ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem5a GIF version

Theorem gausslemma2dlem5a 15123
Description: Lemma for gausslemma2dlem5 15124. (Contributed by AV, 8-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem5a (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem5a
StepHypRef Expression
1 gausslemma2d.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . 4 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . . 4 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem3 15121 . . 3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
6 prodeq2 11687 . . . 4 (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)))
76oveq1d 5925 . . 3 (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃))
85, 7syl 14 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃))
91eldifad 3164 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
10 prmz 12236 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
119, 10syl 14 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
12 4nn 9135 . . . . . . . 8 4 ∈ ℕ
13 znq 9679 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑃 / 4) ∈ ℚ)
1411, 12, 13sylancl 413 . . . . . . 7 (𝜑 → (𝑃 / 4) ∈ ℚ)
1514flqcld 10336 . . . . . 6 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℤ)
164, 15eqeltrid 2280 . . . . 5 (𝜑𝑀 ∈ ℤ)
1716peano2zd 9432 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℤ)
181, 2gausslemma2dlem0b 15108 . . . . 5 (𝜑𝐻 ∈ ℕ)
1918nnzd 9428 . . . 4 (𝜑𝐻 ∈ ℤ)
2017, 19fzfigd 10492 . . 3 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
2110adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ)
22 elfzelz 10081 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
23 2z 9335 . . . . . . . 8 2 ∈ ℤ
2423a1i 9 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
2522, 24zmulcld 9435 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
2625adantl 277 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
2721, 26zsubcld 9434 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
289, 27sylan 283 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
29 neg1z 9339 . . . . . 6 -1 ∈ ℤ
3029a1i 9 . . . . 5 (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ)
3130, 25zmulcld 9435 . . . 4 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈ ℤ)
3231adantl 277 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈ ℤ)
33 prmnn 12235 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
349, 33syl 14 . . 3 (𝜑𝑃 ∈ ℕ)
3525zcnd 9430 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
3635mulm1d 8419 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2))
3736adantl 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2))
3837oveq1d 5925 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃))
39 zq 9681 . . . . . . 7 ((𝑘 · 2) ∈ ℤ → (𝑘 · 2) ∈ ℚ)
4026, 39syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℚ)
41 zq 9681 . . . . . . 7 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
4221, 41syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℚ)
4333nngt0d 9016 . . . . . . 7 (𝑃 ∈ ℙ → 0 < 𝑃)
4443adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 0 < 𝑃)
45 qnegmod 10430 . . . . . 6 (((𝑘 · 2) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃))
4640, 42, 44, 45syl3anc 1249 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃))
4738, 46eqtr2d 2227 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃))
489, 47sylan 283 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃))
4920, 28, 32, 34, 48fprodmodd 11771 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
508, 49eqtrd 2226 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  cdif 3150  ifcif 3557  {csn 3618   class class class wbr 4029  cmpt 4090  cfv 5246  (class class class)co 5910  0cc0 7862  1c1 7863   + caddc 7865   · cmul 7867   < clt 8044  cmin 8180  -cneg 8181   / cdiv 8681  cn 8972  2c2 9023  4c4 9025  cz 9307  cq 9674  ...cfz 10064  cfl 10327   mod cmo 10383  cprod 11680  cprime 12232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980  ax-arch 7981  ax-caucvg 7982
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-isom 5255  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-irdg 6414  df-frec 6435  df-1o 6460  df-2o 6461  df-oadd 6464  df-er 6578  df-en 6786  df-dom 6787  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-n0 9231  df-z 9308  df-uz 9583  df-q 9675  df-rp 9710  df-fz 10065  df-fzo 10199  df-fl 10329  df-mod 10384  df-seqfrec 10509  df-exp 10597  df-ihash 10834  df-cj 10973  df-re 10974  df-im 10975  df-rsqrt 11129  df-abs 11130  df-clim 11409  df-proddc 11681  df-dvds 11918  df-prm 12233
This theorem is referenced by:  gausslemma2dlem5  15124
  Copyright terms: Public domain W3C validator