Proof of Theorem gausslemma2dlem5a
| Step | Hyp | Ref
| Expression |
| 1 | | gausslemma2d.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 2 | | gausslemma2d.h |
. . . 4
⊢ 𝐻 = ((𝑃 − 1) / 2) |
| 3 | | gausslemma2d.r |
. . . 4
⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| 4 | | gausslemma2d.m |
. . . 4
⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| 5 | 1, 2, 3, 4 | gausslemma2dlem3 15314 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
| 6 | | prodeq2 11724 |
. . . 4
⊢
(∀𝑘 ∈
((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2))) |
| 7 | 6 | oveq1d 5938 |
. . 3
⊢
(∀𝑘 ∈
((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 8 | 5, 7 | syl 14 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 9 | 1 | eldifad 3168 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 10 | | prmz 12289 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 12 | | 4nn 9156 |
. . . . . . . 8
⊢ 4 ∈
ℕ |
| 13 | | znq 9700 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ 4 ∈
ℕ) → (𝑃 / 4)
∈ ℚ) |
| 14 | 11, 12, 13 | sylancl 413 |
. . . . . . 7
⊢ (𝜑 → (𝑃 / 4) ∈ ℚ) |
| 15 | 14 | flqcld 10369 |
. . . . . 6
⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈
ℤ) |
| 16 | 4, 15 | eqeltrid 2283 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 17 | 16 | peano2zd 9453 |
. . . 4
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 18 | 1, 2 | gausslemma2dlem0b 15301 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 19 | 18 | nnzd 9449 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ ℤ) |
| 20 | 17, 19 | fzfigd 10525 |
. . 3
⊢ (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin) |
| 21 | 10 | adantr 276 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ) |
| 22 | | elfzelz 10102 |
. . . . . . 7
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) |
| 23 | | 2z 9356 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 24 | 23 | a1i 9 |
. . . . . . 7
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) |
| 25 | 22, 24 | zmulcld 9456 |
. . . . . 6
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) |
| 26 | 25 | adantl 277 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ) |
| 27 | 21, 26 | zsubcld 9455 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈
ℤ) |
| 28 | 9, 27 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈
ℤ) |
| 29 | | neg1z 9360 |
. . . . . 6
⊢ -1 ∈
ℤ |
| 30 | 29 | a1i 9 |
. . . . 5
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ) |
| 31 | 30, 25 | zmulcld 9456 |
. . . 4
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈
ℤ) |
| 32 | 31 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈
ℤ) |
| 33 | | prmnn 12288 |
. . . 4
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 34 | 9, 33 | syl 14 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 35 | 25 | zcnd 9451 |
. . . . . . . 8
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ) |
| 36 | 35 | mulm1d 8438 |
. . . . . . 7
⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
| 37 | 36 | adantl 277 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
| 38 | 37 | oveq1d 5938 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃)) |
| 39 | | zq 9702 |
. . . . . . 7
⊢ ((𝑘 · 2) ∈ ℤ
→ (𝑘 · 2)
∈ ℚ) |
| 40 | 26, 39 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℚ) |
| 41 | | zq 9702 |
. . . . . . 7
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℚ) |
| 42 | 21, 41 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℚ) |
| 43 | 33 | nngt0d 9036 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 0 <
𝑃) |
| 44 | 43 | adantr 276 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 0 < 𝑃) |
| 45 | | qnegmod 10463 |
. . . . . 6
⊢ (((𝑘 · 2) ∈ ℚ
∧ 𝑃 ∈ ℚ
∧ 0 < 𝑃) →
(-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 46 | 40, 42, 44, 45 | syl3anc 1249 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 47 | 38, 46 | eqtr2d 2230 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃)) |
| 48 | 9, 47 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃)) |
| 49 | 20, 28, 32, 34, 48 | fprodmodd 11808 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
| 50 | 8, 49 | eqtrd 2229 |
1
⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |