Step | Hyp | Ref
| Expression |
1 | | mincncf.a |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) |
2 | | cncff 14732 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
3 | 1, 2 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
4 | 3 | fvmptelcdm 5711 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℝ) |
5 | | mincncf.b |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) |
6 | | cncff 14732 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
7 | 5, 6 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
8 | 7 | fvmptelcdm 5711 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℝ) |
9 | | minabs 11379 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
10 | 4, 8, 9 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
11 | 10 | mpteq2dva 4119 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2))) |
12 | 4, 8 | readdcld 8049 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝐵) ∈ ℝ) |
13 | 4, 8 | resubcld 8400 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝐵) ∈ ℝ) |
14 | 13 | recnd 8048 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝐵) ∈ ℂ) |
15 | 14 | abscld 11325 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
16 | 12, 15 | resubcld 8400 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) ∈ ℝ) |
17 | 16 | rehalfcld 9229 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ) |
18 | 17 | fmpttd 5713 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ) |
19 | | ax-resscn 7964 |
. . . 4
⊢ ℝ
⊆ ℂ |
20 | | ssid 3199 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
21 | | cncfss 14738 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℝ) ⊆ (𝑋–cn→ℂ)) |
22 | 19, 20, 21 | mp2an 426 |
. . . . . . . 8
⊢ (𝑋–cn→ℝ) ⊆ (𝑋–cn→ℂ) |
23 | 22, 1 | sselid 3177 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
24 | 22, 5 | sselid 3177 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
25 | 23, 24 | addcncf 14766 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋–cn→ℂ)) |
26 | | cncfss 14738 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)) |
27 | 19, 20, 26 | mp2an 426 |
. . . . . . . . 9
⊢
(ℂ–cn→ℝ)
⊆ (ℂ–cn→ℂ) |
28 | | abscncf 14740 |
. . . . . . . . 9
⊢ abs
∈ (ℂ–cn→ℝ) |
29 | 27, 28 | sselii 3176 |
. . . . . . . 8
⊢ abs
∈ (ℂ–cn→ℂ) |
30 | 29 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → abs ∈
(ℂ–cn→ℂ)) |
31 | 23, 24 | subcncf 14767 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐵)) ∈ (𝑋–cn→ℂ)) |
32 | 30, 31 | cncfmpt1f 14752 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (abs‘(𝐴 − 𝐵))) ∈ (𝑋–cn→ℂ)) |
33 | 25, 32 | subcncf 14767 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) ∈ (𝑋–cn→ℂ)) |
34 | | 2cn 9053 |
. . . . . . 7
⊢ 2 ∈
ℂ |
35 | | 2ap0 9075 |
. . . . . . 7
⊢ 2 #
0 |
36 | | breq1 4032 |
. . . . . . . 8
⊢ (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0)) |
37 | 36 | elrab 2916 |
. . . . . . 7
⊢ (2 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} ↔ (2 ∈
ℂ ∧ 2 # 0)) |
38 | 34, 35, 37 | mpbir2an 944 |
. . . . . 6
⊢ 2 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} |
39 | | cncfrss 14730 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ) → 𝑋 ⊆ ℂ) |
40 | 1, 39 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
41 | | apsscn 8666 |
. . . . . . 7
⊢ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆
ℂ |
42 | 41 | a1i 9 |
. . . . . 6
⊢ (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) |
43 | | cncfmptc 14750 |
. . . . . 6
⊢ ((2
∈ {𝑦 ∈ ℂ
∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) →
(𝑥 ∈ 𝑋 ↦ 2) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
44 | 38, 40, 42, 43 | mp3an2i 1353 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 2) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
45 | 33, 44 | divcncfap 14768 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℂ)) |
46 | | cncfcdm 14737 |
. . . 4
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℂ)) → ((𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ) ↔ (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ)) |
47 | 19, 45, 46 | sylancr 414 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ) ↔ (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ)) |
48 | 18, 47 | mpbird 167 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ)) |
49 | 11, 48 | eqeltrd 2270 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) |