ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincncf GIF version

Theorem mincncf 14795
Description: The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
Hypotheses
Ref Expression
mincncf.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
mincncf.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
Assertion
Ref Expression
mincncf (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mincncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mincncf.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
2 cncff 14756 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐴):𝑋⟶ℝ)
31, 2syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℝ)
43fvmptelcdm 5712 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℝ)
5 mincncf.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
6 cncff 14756 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐵):𝑋⟶ℝ)
75, 6syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℝ)
87fvmptelcdm 5712 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℝ)
9 minabs 11382 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
104, 8, 9syl2anc 411 . . 3 ((𝜑𝑥𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
1110mpteq2dva 4120 . 2 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)))
124, 8readdcld 8051 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 + 𝐵) ∈ ℝ)
134, 8resubcld 8402 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℝ)
1413recnd 8050 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℂ)
1514abscld 11328 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐴𝐵)) ∈ ℝ)
1612, 15resubcld 8402 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) ∈ ℝ)
1716rehalfcld 9232 . . . 4 ((𝜑𝑥𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
1817fmpttd 5714 . . 3 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ)
19 ax-resscn 7966 . . . 4 ℝ ⊆ ℂ
20 ssid 3200 . . . . . . . . 9 ℂ ⊆ ℂ
21 cncfss 14762 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ))
2219, 20, 21mp2an 426 . . . . . . . 8 (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ)
2322, 1sselid 3178 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2422, 5sselid 3178 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2523, 24addcncf 14791 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋cn→ℂ))
26 cncfss 14762 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2719, 20, 26mp2an 426 . . . . . . . . 9 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
28 abscncf 14764 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
2927, 28sselii 3177 . . . . . . . 8 abs ∈ (ℂ–cn→ℂ)
3029a1i 9 . . . . . . 7 (𝜑 → abs ∈ (ℂ–cn→ℂ))
3123, 24subcncf 14792 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐵)) ∈ (𝑋cn→ℂ))
3230, 31cncfmpt1f 14777 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (abs‘(𝐴𝐵))) ∈ (𝑋cn→ℂ))
3325, 32subcncf 14792 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴𝐵)))) ∈ (𝑋cn→ℂ))
34 2cn 9055 . . . . . . 7 2 ∈ ℂ
35 2ap0 9077 . . . . . . 7 2 # 0
36 breq1 4033 . . . . . . . 8 (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0))
3736elrab 2917 . . . . . . 7 (2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (2 ∈ ℂ ∧ 2 # 0))
3834, 35, 37mpbir2an 944 . . . . . 6 2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}
39 cncfrss 14754 . . . . . . 7 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → 𝑋 ⊆ ℂ)
401, 39syl 14 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
41 apsscn 8668 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
4241a1i 9 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ)
43 cncfmptc 14775 . . . . . 6 ((2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4438, 40, 42, 43mp3an2i 1353 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4533, 44divcncfap 14793 . . . 4 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ))
46 cncfcdm 14761 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4719, 45, 46sylancr 414 . . 3 (𝜑 → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4818, 47mpbird 167 . 2 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ))
4911, 48eqeltrd 2270 1 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476  wss 3154  {cpr 3620   class class class wbr 4030  cmpt 4091  wf 5251  cfv 5255  (class class class)co 5919  infcinf 7044  cc 7872  cr 7873  0cc0 7874   + caddc 7877   < clt 8056  cmin 8192   # cap 8602   / cdiv 8693  2c2 9035  abscabs 11144  cnccncf 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750
This theorem is referenced by:  hovercncf  14825
  Copyright terms: Public domain W3C validator