ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincncf GIF version

Theorem mincncf 15290
Description: The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
Hypotheses
Ref Expression
mincncf.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
mincncf.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
Assertion
Ref Expression
mincncf (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mincncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mincncf.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
2 cncff 15251 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐴):𝑋⟶ℝ)
31, 2syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℝ)
43fvmptelcdm 5788 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℝ)
5 mincncf.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
6 cncff 15251 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐵):𝑋⟶ℝ)
75, 6syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℝ)
87fvmptelcdm 5788 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℝ)
9 minabs 11747 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
104, 8, 9syl2anc 411 . . 3 ((𝜑𝑥𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
1110mpteq2dva 4174 . 2 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)))
124, 8readdcld 8176 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 + 𝐵) ∈ ℝ)
134, 8resubcld 8527 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℝ)
1413recnd 8175 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℂ)
1514abscld 11692 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐴𝐵)) ∈ ℝ)
1612, 15resubcld 8527 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) ∈ ℝ)
1716rehalfcld 9358 . . . 4 ((𝜑𝑥𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
1817fmpttd 5790 . . 3 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ)
19 ax-resscn 8091 . . . 4 ℝ ⊆ ℂ
20 ssid 3244 . . . . . . . . 9 ℂ ⊆ ℂ
21 cncfss 15257 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ))
2219, 20, 21mp2an 426 . . . . . . . 8 (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ)
2322, 1sselid 3222 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2422, 5sselid 3222 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2523, 24addcncf 15286 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋cn→ℂ))
26 cncfss 15257 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2719, 20, 26mp2an 426 . . . . . . . . 9 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
28 abscncf 15259 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
2927, 28sselii 3221 . . . . . . . 8 abs ∈ (ℂ–cn→ℂ)
3029a1i 9 . . . . . . 7 (𝜑 → abs ∈ (ℂ–cn→ℂ))
3123, 24subcncf 15287 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐵)) ∈ (𝑋cn→ℂ))
3230, 31cncfmpt1f 15272 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (abs‘(𝐴𝐵))) ∈ (𝑋cn→ℂ))
3325, 32subcncf 15287 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴𝐵)))) ∈ (𝑋cn→ℂ))
34 2cn 9181 . . . . . . 7 2 ∈ ℂ
35 2ap0 9203 . . . . . . 7 2 # 0
36 breq1 4086 . . . . . . . 8 (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0))
3736elrab 2959 . . . . . . 7 (2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (2 ∈ ℂ ∧ 2 # 0))
3834, 35, 37mpbir2an 948 . . . . . 6 2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}
39 cncfrss 15249 . . . . . . 7 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → 𝑋 ⊆ ℂ)
401, 39syl 14 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
41 apsscn 8794 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
4241a1i 9 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ)
43 cncfmptc 15270 . . . . . 6 ((2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4438, 40, 42, 43mp3an2i 1376 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4533, 44divcncfap 15288 . . . 4 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ))
46 cncfcdm 15256 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4719, 45, 46sylancr 414 . . 3 (𝜑 → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4818, 47mpbird 167 . 2 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ))
4911, 48eqeltrd 2306 1 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {crab 2512  wss 3197  {cpr 3667   class class class wbr 4083  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6001  infcinf 7150  cc 7997  cr 7998  0cc0 7999   + caddc 8002   < clt 8181  cmin 8317   # cap 8728   / cdiv 8819  2c2 9161  abscabs 11508  cnccncf 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-addf 8121
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245
This theorem is referenced by:  hovercncf  15320
  Copyright terms: Public domain W3C validator