ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincncf GIF version

Theorem mincncf 14852
Description: The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
Hypotheses
Ref Expression
mincncf.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
mincncf.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
Assertion
Ref Expression
mincncf (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mincncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mincncf.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
2 cncff 14813 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐴):𝑋⟶ℝ)
31, 2syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℝ)
43fvmptelcdm 5715 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℝ)
5 mincncf.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
6 cncff 14813 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐵):𝑋⟶ℝ)
75, 6syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℝ)
87fvmptelcdm 5715 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℝ)
9 minabs 11401 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
104, 8, 9syl2anc 411 . . 3 ((𝜑𝑥𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
1110mpteq2dva 4123 . 2 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)))
124, 8readdcld 8056 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 + 𝐵) ∈ ℝ)
134, 8resubcld 8407 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℝ)
1413recnd 8055 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℂ)
1514abscld 11346 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐴𝐵)) ∈ ℝ)
1612, 15resubcld 8407 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) ∈ ℝ)
1716rehalfcld 9238 . . . 4 ((𝜑𝑥𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
1817fmpttd 5717 . . 3 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ)
19 ax-resscn 7971 . . . 4 ℝ ⊆ ℂ
20 ssid 3203 . . . . . . . . 9 ℂ ⊆ ℂ
21 cncfss 14819 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ))
2219, 20, 21mp2an 426 . . . . . . . 8 (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ)
2322, 1sselid 3181 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2422, 5sselid 3181 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2523, 24addcncf 14848 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋cn→ℂ))
26 cncfss 14819 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2719, 20, 26mp2an 426 . . . . . . . . 9 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
28 abscncf 14821 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
2927, 28sselii 3180 . . . . . . . 8 abs ∈ (ℂ–cn→ℂ)
3029a1i 9 . . . . . . 7 (𝜑 → abs ∈ (ℂ–cn→ℂ))
3123, 24subcncf 14849 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐵)) ∈ (𝑋cn→ℂ))
3230, 31cncfmpt1f 14834 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (abs‘(𝐴𝐵))) ∈ (𝑋cn→ℂ))
3325, 32subcncf 14849 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴𝐵)))) ∈ (𝑋cn→ℂ))
34 2cn 9061 . . . . . . 7 2 ∈ ℂ
35 2ap0 9083 . . . . . . 7 2 # 0
36 breq1 4036 . . . . . . . 8 (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0))
3736elrab 2920 . . . . . . 7 (2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (2 ∈ ℂ ∧ 2 # 0))
3834, 35, 37mpbir2an 944 . . . . . 6 2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}
39 cncfrss 14811 . . . . . . 7 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → 𝑋 ⊆ ℂ)
401, 39syl 14 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
41 apsscn 8674 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
4241a1i 9 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ)
43 cncfmptc 14832 . . . . . 6 ((2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4438, 40, 42, 43mp3an2i 1353 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4533, 44divcncfap 14850 . . . 4 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ))
46 cncfcdm 14818 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4719, 45, 46sylancr 414 . . 3 (𝜑 → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4818, 47mpbird 167 . 2 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ))
4911, 48eqeltrd 2273 1 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {crab 2479  wss 3157  {cpr 3623   class class class wbr 4033  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  infcinf 7049  cc 7877  cr 7878  0cc0 7879   + caddc 7882   < clt 8061  cmin 8197   # cap 8608   / cdiv 8699  2c2 9041  abscabs 11162  cnccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807
This theorem is referenced by:  hovercncf  14882
  Copyright terms: Public domain W3C validator