| Step | Hyp | Ref
| Expression |
| 1 | | mincncf.a |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) |
| 2 | | cncff 14813 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 3 | 1, 2 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 4 | 3 | fvmptelcdm 5715 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| 5 | | mincncf.b |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) |
| 6 | | cncff 14813 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 7 | 5, 6 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 8 | 7 | fvmptelcdm 5715 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| 9 | | minabs 11401 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
| 10 | 4, 8, 9 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
| 11 | 10 | mpteq2dva 4123 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2))) |
| 12 | 4, 8 | readdcld 8056 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝐵) ∈ ℝ) |
| 13 | 4, 8 | resubcld 8407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝐵) ∈ ℝ) |
| 14 | 13 | recnd 8055 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝐵) ∈ ℂ) |
| 15 | 14 | abscld 11346 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
| 16 | 12, 15 | resubcld 8407 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) ∈ ℝ) |
| 17 | 16 | rehalfcld 9238 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ) |
| 18 | 17 | fmpttd 5717 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ) |
| 19 | | ax-resscn 7971 |
. . . 4
⊢ ℝ
⊆ ℂ |
| 20 | | ssid 3203 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
| 21 | | cncfss 14819 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℝ) ⊆ (𝑋–cn→ℂ)) |
| 22 | 19, 20, 21 | mp2an 426 |
. . . . . . . 8
⊢ (𝑋–cn→ℝ) ⊆ (𝑋–cn→ℂ) |
| 23 | 22, 1 | sselid 3181 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
| 24 | 22, 5 | sselid 3181 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
| 25 | 23, 24 | addcncf 14848 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋–cn→ℂ)) |
| 26 | | cncfss 14819 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)) |
| 27 | 19, 20, 26 | mp2an 426 |
. . . . . . . . 9
⊢
(ℂ–cn→ℝ)
⊆ (ℂ–cn→ℂ) |
| 28 | | abscncf 14821 |
. . . . . . . . 9
⊢ abs
∈ (ℂ–cn→ℝ) |
| 29 | 27, 28 | sselii 3180 |
. . . . . . . 8
⊢ abs
∈ (ℂ–cn→ℂ) |
| 30 | 29 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → abs ∈
(ℂ–cn→ℂ)) |
| 31 | 23, 24 | subcncf 14849 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐵)) ∈ (𝑋–cn→ℂ)) |
| 32 | 30, 31 | cncfmpt1f 14834 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (abs‘(𝐴 − 𝐵))) ∈ (𝑋–cn→ℂ)) |
| 33 | 25, 32 | subcncf 14849 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) ∈ (𝑋–cn→ℂ)) |
| 34 | | 2cn 9061 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 35 | | 2ap0 9083 |
. . . . . . 7
⊢ 2 #
0 |
| 36 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0)) |
| 37 | 36 | elrab 2920 |
. . . . . . 7
⊢ (2 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} ↔ (2 ∈
ℂ ∧ 2 # 0)) |
| 38 | 34, 35, 37 | mpbir2an 944 |
. . . . . 6
⊢ 2 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} |
| 39 | | cncfrss 14811 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ) → 𝑋 ⊆ ℂ) |
| 40 | 1, 39 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 41 | | apsscn 8674 |
. . . . . . 7
⊢ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆
ℂ |
| 42 | 41 | a1i 9 |
. . . . . 6
⊢ (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) |
| 43 | | cncfmptc 14832 |
. . . . . 6
⊢ ((2
∈ {𝑦 ∈ ℂ
∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) →
(𝑥 ∈ 𝑋 ↦ 2) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
| 44 | 38, 40, 42, 43 | mp3an2i 1353 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 2) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
| 45 | 33, 44 | divcncfap 14850 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℂ)) |
| 46 | | cncfcdm 14818 |
. . . 4
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℂ)) → ((𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ) ↔ (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ)) |
| 47 | 19, 45, 46 | sylancr 414 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ) ↔ (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ)) |
| 48 | 18, 47 | mpbird 167 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ)) |
| 49 | 11, 48 | eqeltrd 2273 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) |