ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincncf GIF version

Theorem mincncf 14936
Description: The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
Hypotheses
Ref Expression
mincncf.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
mincncf.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
Assertion
Ref Expression
mincncf (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mincncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mincncf.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℝ))
2 cncff 14897 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐴):𝑋⟶ℝ)
31, 2syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℝ)
43fvmptelcdm 5718 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℝ)
5 mincncf.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℝ))
6 cncff 14897 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℝ) → (𝑥𝑋𝐵):𝑋⟶ℝ)
75, 6syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℝ)
87fvmptelcdm 5718 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℝ)
9 minabs 11418 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
104, 8, 9syl2anc 411 . . 3 ((𝜑𝑥𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
1110mpteq2dva 4124 . 2 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)))
124, 8readdcld 8073 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 + 𝐵) ∈ ℝ)
134, 8resubcld 8424 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℝ)
1413recnd 8072 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴𝐵) ∈ ℂ)
1514abscld 11363 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐴𝐵)) ∈ ℝ)
1612, 15resubcld 8424 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) ∈ ℝ)
1716rehalfcld 9255 . . . 4 ((𝜑𝑥𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
1817fmpttd 5720 . . 3 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ)
19 ax-resscn 7988 . . . 4 ℝ ⊆ ℂ
20 ssid 3204 . . . . . . . . 9 ℂ ⊆ ℂ
21 cncfss 14903 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ))
2219, 20, 21mp2an 426 . . . . . . . 8 (𝑋cn→ℝ) ⊆ (𝑋cn→ℂ)
2322, 1sselid 3182 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2422, 5sselid 3182 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2523, 24addcncf 14932 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋cn→ℂ))
26 cncfss 14903 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2719, 20, 26mp2an 426 . . . . . . . . 9 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
28 abscncf 14905 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
2927, 28sselii 3181 . . . . . . . 8 abs ∈ (ℂ–cn→ℂ)
3029a1i 9 . . . . . . 7 (𝜑 → abs ∈ (ℂ–cn→ℂ))
3123, 24subcncf 14933 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐵)) ∈ (𝑋cn→ℂ))
3230, 31cncfmpt1f 14918 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (abs‘(𝐴𝐵))) ∈ (𝑋cn→ℂ))
3325, 32subcncf 14933 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴𝐵)))) ∈ (𝑋cn→ℂ))
34 2cn 9078 . . . . . . 7 2 ∈ ℂ
35 2ap0 9100 . . . . . . 7 2 # 0
36 breq1 4037 . . . . . . . 8 (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0))
3736elrab 2920 . . . . . . 7 (2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (2 ∈ ℂ ∧ 2 # 0))
3834, 35, 37mpbir2an 944 . . . . . 6 2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}
39 cncfrss 14895 . . . . . . 7 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℝ) → 𝑋 ⊆ ℂ)
401, 39syl 14 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
41 apsscn 8691 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
4241a1i 9 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ)
43 cncfmptc 14916 . . . . . 6 ((2 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4438, 40, 42, 43mp3an2i 1353 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 2) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
4533, 44divcncfap 14934 . . . 4 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ))
46 cncfcdm 14902 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4719, 45, 46sylancr 414 . . 3 (𝜑 → ((𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ) ↔ (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)):𝑋⟶ℝ))
4818, 47mpbird 167 . 2 (𝜑 → (𝑥𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2)) ∈ (𝑋cn→ℝ))
4911, 48eqeltrd 2273 1 (𝜑 → (𝑥𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋cn→ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {crab 2479  wss 3157  {cpr 3624   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7894  cr 7895  0cc0 7896   + caddc 7899   < clt 8078  cmin 8214   # cap 8625   / cdiv 8716  2c2 9058  abscabs 11179  cnccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-addf 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891
This theorem is referenced by:  hovercncf  14966
  Copyright terms: Public domain W3C validator