| Step | Hyp | Ref
 | Expression | 
| 1 |   | mincncf.a | 
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ)) | 
| 2 |   | cncff 14813 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) | 
| 3 | 1, 2 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) | 
| 4 | 3 | fvmptelcdm 5715 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℝ) | 
| 5 |   | mincncf.b | 
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ)) | 
| 6 |   | cncff 14813 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℝ) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) | 
| 7 | 5, 6 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) | 
| 8 | 7 | fvmptelcdm 5715 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℝ) | 
| 9 |   | minabs 11401 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) | 
| 10 | 4, 8, 9 | syl2anc 411 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) | 
| 11 | 10 | mpteq2dva 4123 | 
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) = (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2))) | 
| 12 | 4, 8 | readdcld 8056 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝐵) ∈ ℝ) | 
| 13 | 4, 8 | resubcld 8407 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝐵) ∈ ℝ) | 
| 14 | 13 | recnd 8055 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − 𝐵) ∈ ℂ) | 
| 15 | 14 | abscld 11346 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | 
| 16 | 12, 15 | resubcld 8407 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) ∈ ℝ) | 
| 17 | 16 | rehalfcld 9238 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ) | 
| 18 | 17 | fmpttd 5717 | 
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ) | 
| 19 |   | ax-resscn 7971 | 
. . . 4
⊢ ℝ
⊆ ℂ | 
| 20 |   | ssid 3203 | 
. . . . . . . . 9
⊢ ℂ
⊆ ℂ | 
| 21 |   | cncfss 14819 | 
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℝ) ⊆ (𝑋–cn→ℂ)) | 
| 22 | 19, 20, 21 | mp2an 426 | 
. . . . . . . 8
⊢ (𝑋–cn→ℝ) ⊆ (𝑋–cn→ℂ) | 
| 23 | 22, 1 | sselid 3181 | 
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | 
| 24 | 22, 5 | sselid 3181 | 
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | 
| 25 | 23, 24 | addcncf 14848 | 
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋–cn→ℂ)) | 
| 26 |   | cncfss 14819 | 
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)) | 
| 27 | 19, 20, 26 | mp2an 426 | 
. . . . . . . . 9
⊢
(ℂ–cn→ℝ)
⊆ (ℂ–cn→ℂ) | 
| 28 |   | abscncf 14821 | 
. . . . . . . . 9
⊢ abs
∈ (ℂ–cn→ℝ) | 
| 29 | 27, 28 | sselii 3180 | 
. . . . . . . 8
⊢ abs
∈ (ℂ–cn→ℂ) | 
| 30 | 29 | a1i 9 | 
. . . . . . 7
⊢ (𝜑 → abs ∈
(ℂ–cn→ℂ)) | 
| 31 | 23, 24 | subcncf 14849 | 
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐵)) ∈ (𝑋–cn→ℂ)) | 
| 32 | 30, 31 | cncfmpt1f 14834 | 
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (abs‘(𝐴 − 𝐵))) ∈ (𝑋–cn→ℂ)) | 
| 33 | 25, 32 | subcncf 14849 | 
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵)))) ∈ (𝑋–cn→ℂ)) | 
| 34 |   | 2cn 9061 | 
. . . . . . 7
⊢ 2 ∈
ℂ | 
| 35 |   | 2ap0 9083 | 
. . . . . . 7
⊢ 2 #
0 | 
| 36 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑦 = 2 → (𝑦 # 0 ↔ 2 # 0)) | 
| 37 | 36 | elrab 2920 | 
. . . . . . 7
⊢ (2 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} ↔ (2 ∈
ℂ ∧ 2 # 0)) | 
| 38 | 34, 35, 37 | mpbir2an 944 | 
. . . . . 6
⊢ 2 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} | 
| 39 |   | cncfrss 14811 | 
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℝ) → 𝑋 ⊆ ℂ) | 
| 40 | 1, 39 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) | 
| 41 |   | apsscn 8674 | 
. . . . . . 7
⊢ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆
ℂ | 
| 42 | 41 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) | 
| 43 |   | cncfmptc 14832 | 
. . . . . 6
⊢ ((2
∈ {𝑦 ∈ ℂ
∣ 𝑦 # 0} ∧ 𝑋 ⊆ ℂ ∧ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ) →
(𝑥 ∈ 𝑋 ↦ 2) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) | 
| 44 | 38, 40, 42, 43 | mp3an2i 1353 | 
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 2) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) | 
| 45 | 33, 44 | divcncfap 14850 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℂ)) | 
| 46 |   | cncfcdm 14818 | 
. . . 4
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℂ)) → ((𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ) ↔ (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ)) | 
| 47 | 19, 45, 46 | sylancr 414 | 
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ) ↔ (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)):𝑋⟶ℝ)) | 
| 48 | 18, 47 | mpbird 167 | 
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) ∈ (𝑋–cn→ℝ)) | 
| 49 | 11, 48 | eqeltrd 2273 | 
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ inf({𝐴, 𝐵}, ℝ, < )) ∈ (𝑋–cn→ℝ)) |