ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ply1termlem GIF version

Theorem ply1termlem 14921
Description: Lemma for ply1term 14922. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
ply1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑘)

Proof of Theorem ply1termlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ply1term.1 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
2 simplr 528 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
3 nn0uz 9630 . . . . . . 7 0 = (ℤ‘0)
42, 3eleqtrdi 2286 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
5 fzss1 10132 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑁) ⊆ (0...𝑁))
64, 5syl 14 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑁...𝑁) ⊆ (0...𝑁))
7 elfz1eq 10104 . . . . . . . . 9 (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁)
87adantl 277 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 = 𝑁)
9 iftrue 3563 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴)
108, 9syl 14 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴)
11 simpll 527 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1211adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝐴 ∈ ℂ)
1310, 12eqeltrd 2270 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
14 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑧 ∈ ℂ)
152adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑁 ∈ ℕ0)
168, 15eqeltrd 2270 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 ∈ ℕ0)
1714, 16expcld 10747 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → (𝑧𝑘) ∈ ℂ)
1813, 17mulcld 8042 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) ∈ ℂ)
19 eldifn 3283 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → ¬ 𝑘 ∈ (𝑁...𝑁))
2019adantl 277 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 ∈ (𝑁...𝑁))
212adantr 276 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℕ0)
2221nn0zd 9440 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℤ)
23 fzsn 10135 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
2423eleq2d 2263 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 ∈ {𝑁}))
25 elsn2g 3652 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑘 ∈ {𝑁} ↔ 𝑘 = 𝑁))
2624, 25bitrd 188 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁))
2722, 26syl 14 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁))
2820, 27mtbid 673 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 = 𝑁)
2928iffalsed 3568 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → if(𝑘 = 𝑁, 𝐴, 0) = 0)
3029oveq1d 5934 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
31 simpr 110 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
32 eldifi 3282 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ (0...𝑁))
33 elfznn0 10183 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3432, 33syl 14 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ ℕ0)
35 expcl 10631 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
3631, 34, 35syl2an 289 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑧𝑘) ∈ ℂ)
3736mul02d 8413 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (0 · (𝑧𝑘)) = 0)
3830, 37eqtrd 2226 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = 0)
39 elfzelz 10094 . . . . . . . 8 (𝑤 ∈ (0...𝑁) → 𝑤 ∈ ℤ)
4039adantl 277 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0...𝑁)) → 𝑤 ∈ ℤ)
412nn0zd 9440 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
4241adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
43 fzdcel 10109 . . . . . . 7 ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑤 ∈ (𝑁...𝑁))
4440, 42, 42, 43syl3anc 1249 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0...𝑁)) → DECID 𝑤 ∈ (𝑁...𝑁))
4544ralrimiva 2567 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ∀𝑤 ∈ (0...𝑁)DECID 𝑤 ∈ (𝑁...𝑁))
46 0zd 9332 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 0 ∈ ℤ)
4746, 41fzfigd 10505 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
486, 18, 38, 45, 47fisumss 11538 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
4931, 2expcld 10747 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑧𝑁) ∈ ℂ)
5011, 49mulcld 8042 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧𝑁)) ∈ ℂ)
51 oveq2 5927 . . . . . . 7 (𝑘 = 𝑁 → (𝑧𝑘) = (𝑧𝑁))
529, 51oveq12d 5937 . . . . . 6 (𝑘 = 𝑁 → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
5352fsum1 11558 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝐴 · (𝑧𝑁)) ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
5441, 50, 53syl2anc 411 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
5548, 54eqtr3d 2228 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
5655mpteq2dva 4120 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁))))
571, 56eqtr4id 2245 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  cdif 3151  wss 3154  ifcif 3558  {csn 3619  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874   · cmul 7879  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  cexp 10612  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  ply1term  14922
  Copyright terms: Public domain W3C validator