Step | Hyp | Ref
| Expression |
1 | | ply1term.1 |
. 2
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) |
2 | | simplr 528 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
ℕ0) |
3 | | nn0uz 9627 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | eleqtrdi 2286 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
(ℤ≥‘0)) |
5 | | fzss1 10129 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑁...𝑁) ⊆ (0...𝑁)) |
6 | 4, 5 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝑁...𝑁) ⊆ (0...𝑁)) |
7 | | elfz1eq 10101 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) |
8 | 7 | adantl 277 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 = 𝑁) |
9 | | iftrue 3562 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴) |
10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴) |
11 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝐴 ∈
ℂ) |
12 | 11 | adantr 276 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝐴 ∈ ℂ) |
13 | 10, 12 | eqeltrd 2270 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ) |
14 | | simplr 528 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑧 ∈ ℂ) |
15 | 2 | adantr 276 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑁 ∈
ℕ0) |
16 | 8, 15 | eqeltrd 2270 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 ∈ ℕ0) |
17 | 14, 16 | expcld 10744 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → (𝑧↑𝑘) ∈ ℂ) |
18 | 13, 17 | mulcld 8040 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) ∈ ℂ) |
19 | | eldifn 3282 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → ¬ 𝑘 ∈ (𝑁...𝑁)) |
20 | 19 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 ∈ (𝑁...𝑁)) |
21 | 2 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈
ℕ0) |
22 | 21 | nn0zd 9437 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℤ) |
23 | | fzsn 10132 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
24 | 23 | eleq2d 2263 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 ∈ {𝑁})) |
25 | | elsn2g 3651 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ {𝑁} ↔ 𝑘 = 𝑁)) |
26 | 24, 25 | bitrd 188 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
27 | 22, 26 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
28 | 20, 27 | mtbid 673 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 = 𝑁) |
29 | 28 | iffalsed 3567 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → if(𝑘 = 𝑁, 𝐴, 0) = 0) |
30 | 29 | oveq1d 5933 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
31 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑧 ∈
ℂ) |
32 | | eldifi 3281 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ (0...𝑁)) |
33 | | elfznn0 10180 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
34 | 32, 33 | syl 14 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ ℕ0) |
35 | | expcl 10628 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
36 | 31, 34, 35 | syl2an 289 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
37 | 36 | mul02d 8411 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
38 | 30, 37 | eqtrd 2226 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = 0) |
39 | | elfzelz 10091 |
. . . . . . . 8
⊢ (𝑤 ∈ (0...𝑁) → 𝑤 ∈ ℤ) |
40 | 39 | adantl 277 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑤 ∈ (0...𝑁)) → 𝑤 ∈ ℤ) |
41 | 2 | nn0zd 9437 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
ℤ) |
42 | 41 | adantr 276 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑤 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
43 | | fzdcel 10106 |
. . . . . . 7
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑤
∈ (𝑁...𝑁)) |
44 | 40, 42, 42, 43 | syl3anc 1249 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑤 ∈ (0...𝑁)) → DECID
𝑤 ∈ (𝑁...𝑁)) |
45 | 44 | ralrimiva 2567 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ ∀𝑤 ∈
(0...𝑁)DECID
𝑤 ∈ (𝑁...𝑁)) |
46 | | 0zd 9329 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 0 ∈ ℤ) |
47 | 46, 41 | fzfigd 10502 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (0...𝑁) ∈
Fin) |
48 | 6, 18, 38, 45, 47 | fisumss 11535 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) |
49 | 31, 2 | expcld 10744 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝑧↑𝑁) ∈
ℂ) |
50 | 11, 49 | mulcld 8040 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝐴 · (𝑧↑𝑁)) ∈ ℂ) |
51 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝑧↑𝑘) = (𝑧↑𝑁)) |
52 | 9, 51 | oveq12d 5936 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
53 | 52 | fsum1 11555 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ (𝐴 · (𝑧↑𝑁)) ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
54 | 41, 50, 53 | syl2anc 411 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
55 | 48, 54 | eqtr3d 2228 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
56 | 55 | mpteq2dva 4119 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑧 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁)))) |
57 | 1, 56 | eqtr4id 2245 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝐹 = (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |