ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgmmul Unicode version

Theorem sgmmul 15655
Description: The divisor function for fixed parameter  A is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
sgmmul  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  ( M  x.  N ) )  =  ( ( A  sigma  M )  x.  ( A  sigma  N ) ) )

Proof of Theorem sgmmul
Dummy variables  i  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1027 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  M  e.  NN )
2 simpr2 1028 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  N  e.  NN )
3 simpr3 1029 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( M  gcd  N )  =  1 )
4 eqid 2229 . . 3  |-  { x  e.  NN  |  x  ||  M }  =  {
x  e.  NN  |  x  ||  M }
5 eqid 2229 . . 3  |-  { x  e.  NN  |  x  ||  N }  =  {
x  e.  NN  |  x  ||  N }
6 eqid 2229 . . 3  |-  { x  e.  NN  |  x  ||  ( M  x.  N
) }  =  {
x  e.  NN  |  x  ||  ( M  x.  N ) }
7 ssrab2 3309 . . . . . 6  |-  { x  e.  NN  |  x  ||  M }  C_  NN
8 simpr 110 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  j  e.  {
x  e.  NN  |  x  ||  M } )
97, 8sselid 3222 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  j  e.  NN )
109nnrpd 9878 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  j  e.  RR+ )
11 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  A  e.  CC )
1210, 11rpcncxpcld 15586 . . 3  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  ( j  ^c  A )  e.  CC )
13 ssrab2 3309 . . . . . 6  |-  { x  e.  NN  |  x  ||  N }  C_  NN
14 simpr 110 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  k  e.  {
x  e.  NN  |  x  ||  N } )
1513, 14sselid 3222 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  k  e.  NN )
1615nnrpd 9878 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  k  e.  RR+ )
17 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  A  e.  CC )
1816, 17rpcncxpcld 15586 . . 3  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  ( k  ^c  A )  e.  CC )
199adantrr 479 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
j  e.  NN )
2019nnrpd 9878 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
j  e.  RR+ )
2115adantrl 478 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
k  e.  NN )
2221nnrpd 9878 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
k  e.  RR+ )
23 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  ->  A  e.  CC )
24 rpmulcxp 15568 . . . . 5  |-  ( ( j  e.  RR+  /\  k  e.  RR+  /\  A  e.  CC )  ->  (
( j  x.  k
)  ^c  A )  =  ( ( j  ^c  A )  x.  ( k  ^c  A ) ) )
2520, 22, 23, 24syl3anc 1271 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
( ( j  x.  k )  ^c  A )  =  ( ( j  ^c  A )  x.  (
k  ^c  A ) ) )
2625eqcomd 2235 . . 3  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
( ( j  ^c  A )  x.  (
k  ^c  A ) )  =  ( ( j  x.  k
)  ^c  A ) )
27 oveq1 6001 . . 3  |-  ( i  =  ( j  x.  k )  ->  (
i  ^c  A )  =  ( ( j  x.  k )  ^c  A ) )
281, 2, 3, 4, 5, 6, 12, 18, 26, 27fsumdvdsmul 15650 . 2  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  M } 
( j  ^c  A )  x.  sum_ k  e.  { x  e.  NN  |  x  ||  N }  ( k  ^c  A )
)  =  sum_ i  e.  { x  e.  NN  |  x  ||  ( M  x.  N ) }  ( i  ^c  A ) )
29 sgmval 15642 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN )  ->  ( A  sigma  M )  =  sum_ j  e.  {
x  e.  NN  |  x  ||  M }  (
j  ^c  A ) )
301, 29syldan 282 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  M )  =  sum_ j  e.  { x  e.  NN  |  x  ||  M } 
( j  ^c  A ) )
31 sgmval 15642 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A  sigma  N )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  N }  (
k  ^c  A ) )
322, 31syldan 282 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  N )  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } 
( k  ^c  A ) )
3330, 32oveq12d 6012 . 2  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( ( A 
sigma  M )  x.  ( A  sigma  N ) )  =  ( sum_ j  e.  { x  e.  NN  |  x  ||  M } 
( j  ^c  A )  x.  sum_ k  e.  { x  e.  NN  |  x  ||  N }  ( k  ^c  A )
) )
341, 2nnmulcld 9147 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( M  x.  N )  e.  NN )
35 sgmval 15642 . . 3  |-  ( ( A  e.  CC  /\  ( M  x.  N
)  e.  NN )  ->  ( A  sigma  ( M  x.  N ) )  =  sum_ i  e.  { x  e.  NN  |  x  ||  ( M  x.  N ) }  ( i  ^c  A ) )
3634, 35syldan 282 . 2  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  ( M  x.  N ) )  =  sum_ i  e.  { x  e.  NN  |  x  ||  ( M  x.  N ) }  ( i  ^c  A ) )
3728, 33, 363eqtr4rd 2273 1  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  ( M  x.  N ) )  =  ( ( A  sigma  M )  x.  ( A  sigma  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   class class class wbr 4082  (class class class)co 5994   CCcc 7985   1c1 7988    x. cmul 7992   NNcn 9098   RR+crp 9837   sum_csu 11850    || cdvds 12284    gcd cgcd 12460    ^c ccxp 15516    sigma csgm 15640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-pre-suploc 8108  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-map 6787  df-pm 6788  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-ioo 10076  df-ico 10078  df-icc 10079  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-bc 10957  df-ihash 10985  df-shft 11312  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-ef 12145  df-e 12146  df-dvds 12285  df-gcd 12461  df-rest 13260  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-top 14657  df-topon 14670  df-bases 14702  df-ntr 14755  df-cn 14847  df-cnp 14848  df-tx 14912  df-cncf 15230  df-limced 15315  df-dvap 15316  df-relog 15517  df-rpcxp 15518  df-sgm 15641
This theorem is referenced by:  perfect1  15657  perfectlem1  15658  perfectlem2  15659
  Copyright terms: Public domain W3C validator