ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgmmul Unicode version

Theorem sgmmul 15204
Description: The divisor function for fixed parameter  A is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
sgmmul  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  ( M  x.  N ) )  =  ( ( A  sigma  M )  x.  ( A  sigma  N ) ) )

Proof of Theorem sgmmul
Dummy variables  i  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1005 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  M  e.  NN )
2 simpr2 1006 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  N  e.  NN )
3 simpr3 1007 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( M  gcd  N )  =  1 )
4 eqid 2196 . . 3  |-  { x  e.  NN  |  x  ||  M }  =  {
x  e.  NN  |  x  ||  M }
5 eqid 2196 . . 3  |-  { x  e.  NN  |  x  ||  N }  =  {
x  e.  NN  |  x  ||  N }
6 eqid 2196 . . 3  |-  { x  e.  NN  |  x  ||  ( M  x.  N
) }  =  {
x  e.  NN  |  x  ||  ( M  x.  N ) }
7 ssrab2 3268 . . . . . 6  |-  { x  e.  NN  |  x  ||  M }  C_  NN
8 simpr 110 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  j  e.  {
x  e.  NN  |  x  ||  M } )
97, 8sselid 3181 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  j  e.  NN )
109nnrpd 9766 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  j  e.  RR+ )
11 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  A  e.  CC )
1210, 11rpcncxpcld 15136 . . 3  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  j  e.  {
x  e.  NN  |  x  ||  M } )  ->  ( j  ^c  A )  e.  CC )
13 ssrab2 3268 . . . . . 6  |-  { x  e.  NN  |  x  ||  N }  C_  NN
14 simpr 110 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  k  e.  {
x  e.  NN  |  x  ||  N } )
1513, 14sselid 3181 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  k  e.  NN )
1615nnrpd 9766 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  k  e.  RR+ )
17 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  A  e.  CC )
1816, 17rpcncxpcld 15136 . . 3  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  k  e.  {
x  e.  NN  |  x  ||  N } )  ->  ( k  ^c  A )  e.  CC )
199adantrr 479 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
j  e.  NN )
2019nnrpd 9766 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
j  e.  RR+ )
2115adantrl 478 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
k  e.  NN )
2221nnrpd 9766 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
k  e.  RR+ )
23 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  ->  A  e.  CC )
24 rpmulcxp 15118 . . . . 5  |-  ( ( j  e.  RR+  /\  k  e.  RR+  /\  A  e.  CC )  ->  (
( j  x.  k
)  ^c  A )  =  ( ( j  ^c  A )  x.  ( k  ^c  A ) ) )
2520, 22, 23, 24syl3anc 1249 . . . 4  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
( ( j  x.  k )  ^c  A )  =  ( ( j  ^c  A )  x.  (
k  ^c  A ) ) )
2625eqcomd 2202 . . 3  |-  ( ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  /\  ( j  e. 
{ x  e.  NN  |  x  ||  M }  /\  k  e.  { x  e.  NN  |  x  ||  N } ) )  -> 
( ( j  ^c  A )  x.  (
k  ^c  A ) )  =  ( ( j  x.  k
)  ^c  A ) )
27 oveq1 5929 . . 3  |-  ( i  =  ( j  x.  k )  ->  (
i  ^c  A )  =  ( ( j  x.  k )  ^c  A ) )
281, 2, 3, 4, 5, 6, 12, 18, 26, 27fsumdvdsmul 15199 . 2  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  M } 
( j  ^c  A )  x.  sum_ k  e.  { x  e.  NN  |  x  ||  N }  ( k  ^c  A )
)  =  sum_ i  e.  { x  e.  NN  |  x  ||  ( M  x.  N ) }  ( i  ^c  A ) )
29 sgmval 15191 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN )  ->  ( A  sigma  M )  =  sum_ j  e.  {
x  e.  NN  |  x  ||  M }  (
j  ^c  A ) )
301, 29syldan 282 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  M )  =  sum_ j  e.  { x  e.  NN  |  x  ||  M } 
( j  ^c  A ) )
31 sgmval 15191 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A  sigma  N )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  N }  (
k  ^c  A ) )
322, 31syldan 282 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  N )  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } 
( k  ^c  A ) )
3330, 32oveq12d 5940 . 2  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( ( A 
sigma  M )  x.  ( A  sigma  N ) )  =  ( sum_ j  e.  { x  e.  NN  |  x  ||  M } 
( j  ^c  A )  x.  sum_ k  e.  { x  e.  NN  |  x  ||  N }  ( k  ^c  A )
) )
341, 2nnmulcld 9036 . . 3  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( M  x.  N )  e.  NN )
35 sgmval 15191 . . 3  |-  ( ( A  e.  CC  /\  ( M  x.  N
)  e.  NN )  ->  ( A  sigma  ( M  x.  N ) )  =  sum_ i  e.  { x  e.  NN  |  x  ||  ( M  x.  N ) }  ( i  ^c  A ) )
3634, 35syldan 282 . 2  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  ( M  x.  N ) )  =  sum_ i  e.  { x  e.  NN  |  x  ||  ( M  x.  N ) }  ( i  ^c  A ) )
3728, 33, 363eqtr4rd 2240 1  |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( A  sigma  ( M  x.  N ) )  =  ( ( A  sigma  M )  x.  ( A  sigma  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   class class class wbr 4033  (class class class)co 5922   CCcc 7875   1c1 7878    x. cmul 7882   NNcn 8987   RR+crp 9725   sum_csu 11502    || cdvds 11936    gcd cgcd 12085    ^c ccxp 15066    sigma csgm 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997  ax-pre-suploc 7998  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7048  df-inf 7049  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-xneg 9844  df-xadd 9845  df-ioo 9964  df-ico 9966  df-icc 9967  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-fac 10803  df-bc 10825  df-ihash 10853  df-shft 10965  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-clim 11428  df-sumdc 11503  df-ef 11797  df-e 11798  df-dvds 11937  df-gcd 12086  df-rest 12888  df-topgen 12907  df-psmet 14075  df-xmet 14076  df-met 14077  df-bl 14078  df-mopn 14079  df-top 14210  df-topon 14223  df-bases 14255  df-ntr 14308  df-cn 14400  df-cnp 14401  df-tx 14465  df-cncf 14783  df-limced 14868  df-dvap 14869  df-relog 15067  df-rpcxp 15068  df-sgm 15190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator