ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  perfect1 Unicode version

Theorem perfect1 15234
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form  2 ^ (
p  -  1 )  x.  ( 2 ^ p  -  1 ) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( 2 ^ P )  x.  ( ( 2 ^ P )  -  1 ) ) )

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 15233 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )
2 prmnn 12278 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 14 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN )
4 1sgm2ppw 15231 . . . 4  |-  ( P  e.  NN  ->  (
1  sigma  ( 2 ^ ( P  -  1 ) ) )  =  ( ( 2 ^ P )  -  1 ) )
53, 4syl 14 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( 2 ^ ( P  - 
1 ) ) )  =  ( ( 2 ^ P )  - 
1 ) )
6 1sgmprm 15230 . . . . 5  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( 1 
sigma  ( ( 2 ^ P )  -  1 ) )  =  ( ( ( 2 ^ P )  -  1 )  +  1 ) )
76adantl 277 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ P )  -  1 ) )  =  ( ( ( 2 ^ P )  -  1 )  +  1 ) )
8 2nn 9152 . . . . . . 7  |-  2  e.  NN
93nnnn0d 9302 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN0 )
10 nnexpcl 10644 . . . . . . 7  |-  ( ( 2  e.  NN  /\  P  e.  NN0 )  -> 
( 2 ^ P
)  e.  NN )
118, 9, 10sylancr 414 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  NN )
1211nncnd 9004 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  CC )
13 ax-1cn 7972 . . . . 5  |-  1  e.  CC
14 npcan 8235 . . . . 5  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ P )  - 
1 )  +  1 )  =  ( 2 ^ P ) )
1512, 13, 14sylancl 413 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  +  1 )  =  ( 2 ^ P ) )
167, 15eqtrd 2229 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ P )  -  1 ) )  =  ( 2 ^ P ) )
175, 16oveq12d 5940 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 1  sigma 
( 2 ^ ( P  -  1 ) ) )  x.  (
1  sigma  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( ( 2 ^ P )  -  1 )  x.  ( 2 ^ P
) ) )
1813a1i 9 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  CC )
19 nnm1nn0 9290 . . . . 5  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
203, 19syl 14 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( P  -  1 )  e.  NN0 )
21 nnexpcl 10644 . . . 4  |-  ( ( 2  e.  NN  /\  ( P  -  1
)  e.  NN0 )  ->  ( 2 ^ ( P  -  1 ) )  e.  NN )
228, 20, 21sylancr 414 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ ( P  -  1 ) )  e.  NN )
23 prmnn 12278 . . . 4  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
2423adantl 277 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
2522nnzd 9447 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ ( P  -  1 ) )  e.  ZZ )
26 prmz 12279 . . . . . 6  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ZZ )
2726adantl 277 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ZZ )
2825, 27gcdcomd 12141 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( P  -  1 ) )  gcd  (
( 2 ^ P
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  gcd  ( 2 ^ ( P  -  1 ) ) ) )
29 iddvds 11969 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ZZ  ->  (
( 2 ^ P
)  -  1 ) 
||  ( ( 2 ^ P )  - 
1 ) )
3027, 29syl 14 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  ||  ( ( 2 ^ P )  -  1 ) )
31 prmuz2 12299 . . . . . . . . . 10  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= `  2 )
)
3231adantl 277 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= ` 
2 ) )
33 eluz2gt1 9676 . . . . . . . . 9  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2 ^ P
)  -  1 ) )
3432, 33syl 14 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  ( ( 2 ^ P )  -  1 ) )
35 ndvdsp1 12097 . . . . . . . 8  |-  ( ( ( ( 2 ^ P )  -  1 )  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  NN  /\  1  <  ( ( 2 ^ P )  - 
1 ) )  -> 
( ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ P
)  -  1 )  ->  -.  ( (
2 ^ P )  -  1 )  ||  ( ( ( 2 ^ P )  - 
1 )  +  1 ) ) )
3627, 24, 34, 35syl3anc 1249 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ P
)  -  1 )  ->  -.  ( (
2 ^ P )  -  1 )  ||  ( ( ( 2 ^ P )  - 
1 )  +  1 ) ) )
3730, 36mpd 13 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  -.  ( ( 2 ^ P )  - 
1 )  ||  (
( ( 2 ^ P )  -  1 )  +  1 ) )
38 2z 9354 . . . . . . . . 9  |-  2  e.  ZZ
3938a1i 9 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2  e.  ZZ )
40 dvdsmultr1 11996 . . . . . . . 8  |-  ( ( ( ( 2 ^ P )  -  1 )  e.  ZZ  /\  ( 2 ^ ( P  -  1 ) )  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) )  ->  ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ ( P  -  1 ) )  x.  2 ) ) )
4127, 25, 39, 40syl3anc 1249 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) )  ->  ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ ( P  -  1 ) )  x.  2 ) ) )
42 2cn 9061 . . . . . . . . . 10  |-  2  e.  CC
43 expm1t 10659 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  P  e.  NN )  ->  ( 2 ^ P
)  =  ( ( 2 ^ ( P  -  1 ) )  x.  2 ) )
4442, 3, 43sylancr 414 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  =  ( ( 2 ^ ( P  -  1 ) )  x.  2 ) )
4515, 44eqtr2d 2230 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( P  -  1 ) )  x.  2 )  =  ( ( ( 2 ^ P
)  -  1 )  +  1 ) )
4645breq2d 4045 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ ( P  -  1 ) )  x.  2 )  <-> 
( ( 2 ^ P )  -  1 )  ||  ( ( ( 2 ^ P
)  -  1 )  +  1 ) ) )
4741, 46sylibd 149 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) )  ->  ( ( 2 ^ P )  - 
1 )  ||  (
( ( 2 ^ P )  -  1 )  +  1 ) ) )
4837, 47mtod 664 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  -.  ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) ) )
49 simpr 110 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  Prime )
50 coprm 12312 . . . . . 6  |-  ( ( ( ( 2 ^ P )  -  1 )  e.  Prime  /\  (
2 ^ ( P  -  1 ) )  e.  ZZ )  -> 
( -.  ( ( 2 ^ P )  -  1 )  ||  ( 2 ^ ( P  -  1 ) )  <->  ( ( ( 2 ^ P )  -  1 )  gcd  ( 2 ^ ( P  -  1 ) ) )  =  1 ) )
5149, 25, 50syl2anc 411 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( -.  ( ( 2 ^ P )  -  1 )  ||  ( 2 ^ ( P  -  1 ) )  <->  ( ( ( 2 ^ P )  -  1 )  gcd  ( 2 ^ ( P  -  1 ) ) )  =  1 ) )
5248, 51mpbid 147 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  gcd  (
2 ^ ( P  -  1 ) ) )  =  1 )
5328, 52eqtrd 2229 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( P  -  1 ) )  gcd  (
( 2 ^ P
)  -  1 ) )  =  1 )
54 sgmmul 15232 . . 3  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ ( P  -  1 ) )  e.  NN  /\  ( ( 2 ^ P )  -  1 )  e.  NN  /\  ( ( 2 ^ ( P  -  1 ) )  gcd  (
( 2 ^ P
)  -  1 ) )  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ ( P  -  1 ) )  x.  (
( 2 ^ P
)  -  1 ) ) )  =  ( ( 1  sigma  ( 2 ^ ( P  - 
1 ) ) )  x.  ( 1  sigma 
( ( 2 ^ P )  -  1 ) ) ) )
5518, 22, 24, 53, 54syl13anc 1251 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( 1 
sigma  ( 2 ^ ( P  -  1 ) ) )  x.  (
1  sigma  ( ( 2 ^ P )  - 
1 ) ) ) )
56 subcl 8225 . . . 4  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2 ^ P )  -  1 )  e.  CC )
5712, 13, 56sylancl 413 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  CC )
5812, 57mulcomd 8048 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  x.  (
( 2 ^ P
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  x.  ( 2 ^ P ) ) )
5917, 55, 583eqtr4d 2239 1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( 2 ^ P )  x.  ( ( 2 ^ P )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    - cmin 8197   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ^cexp 10630    || cdvds 11952    gcd cgcd 12120   Primecprime 12275    sigma csgm 15217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-xnn0 9313  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-e 11814  df-dvds 11953  df-gcd 12121  df-prm 12276  df-pc 12454  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893  df-relog 15094  df-rpcxp 15095  df-sgm 15218
This theorem is referenced by:  perfect  15237
  Copyright terms: Public domain W3C validator