ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  perfect1 Unicode version

Theorem perfect1 15514
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form  2 ^ (
p  -  1 )  x.  ( 2 ^ p  -  1 ) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( 2 ^ P )  x.  ( ( 2 ^ P )  -  1 ) ) )

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 15513 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )
2 prmnn 12476 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 14 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN )
4 1sgm2ppw 15511 . . . 4  |-  ( P  e.  NN  ->  (
1  sigma  ( 2 ^ ( P  -  1 ) ) )  =  ( ( 2 ^ P )  -  1 ) )
53, 4syl 14 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( 2 ^ ( P  - 
1 ) ) )  =  ( ( 2 ^ P )  - 
1 ) )
6 1sgmprm 15510 . . . . 5  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( 1 
sigma  ( ( 2 ^ P )  -  1 ) )  =  ( ( ( 2 ^ P )  -  1 )  +  1 ) )
76adantl 277 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ P )  -  1 ) )  =  ( ( ( 2 ^ P )  -  1 )  +  1 ) )
8 2nn 9205 . . . . . . 7  |-  2  e.  NN
93nnnn0d 9355 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN0 )
10 nnexpcl 10704 . . . . . . 7  |-  ( ( 2  e.  NN  /\  P  e.  NN0 )  -> 
( 2 ^ P
)  e.  NN )
118, 9, 10sylancr 414 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  NN )
1211nncnd 9057 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  CC )
13 ax-1cn 8025 . . . . 5  |-  1  e.  CC
14 npcan 8288 . . . . 5  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ P )  - 
1 )  +  1 )  =  ( 2 ^ P ) )
1512, 13, 14sylancl 413 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  +  1 )  =  ( 2 ^ P ) )
167, 15eqtrd 2239 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ P )  -  1 ) )  =  ( 2 ^ P ) )
175, 16oveq12d 5969 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 1  sigma 
( 2 ^ ( P  -  1 ) ) )  x.  (
1  sigma  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( ( 2 ^ P )  -  1 )  x.  ( 2 ^ P
) ) )
1813a1i 9 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  CC )
19 nnm1nn0 9343 . . . . 5  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
203, 19syl 14 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( P  -  1 )  e.  NN0 )
21 nnexpcl 10704 . . . 4  |-  ( ( 2  e.  NN  /\  ( P  -  1
)  e.  NN0 )  ->  ( 2 ^ ( P  -  1 ) )  e.  NN )
228, 20, 21sylancr 414 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ ( P  -  1 ) )  e.  NN )
23 prmnn 12476 . . . 4  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
2423adantl 277 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
2522nnzd 9501 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ ( P  -  1 ) )  e.  ZZ )
26 prmz 12477 . . . . . 6  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ZZ )
2726adantl 277 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ZZ )
2825, 27gcdcomd 12339 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( P  -  1 ) )  gcd  (
( 2 ^ P
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  gcd  ( 2 ^ ( P  -  1 ) ) ) )
29 iddvds 12159 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ZZ  ->  (
( 2 ^ P
)  -  1 ) 
||  ( ( 2 ^ P )  - 
1 ) )
3027, 29syl 14 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  ||  ( ( 2 ^ P )  -  1 ) )
31 prmuz2 12497 . . . . . . . . . 10  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= `  2 )
)
3231adantl 277 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= ` 
2 ) )
33 eluz2gt1 9730 . . . . . . . . 9  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2 ^ P
)  -  1 ) )
3432, 33syl 14 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  ( ( 2 ^ P )  -  1 ) )
35 ndvdsp1 12287 . . . . . . . 8  |-  ( ( ( ( 2 ^ P )  -  1 )  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  NN  /\  1  <  ( ( 2 ^ P )  - 
1 ) )  -> 
( ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ P
)  -  1 )  ->  -.  ( (
2 ^ P )  -  1 )  ||  ( ( ( 2 ^ P )  - 
1 )  +  1 ) ) )
3627, 24, 34, 35syl3anc 1250 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ P
)  -  1 )  ->  -.  ( (
2 ^ P )  -  1 )  ||  ( ( ( 2 ^ P )  - 
1 )  +  1 ) ) )
3730, 36mpd 13 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  -.  ( ( 2 ^ P )  - 
1 )  ||  (
( ( 2 ^ P )  -  1 )  +  1 ) )
38 2z 9407 . . . . . . . . 9  |-  2  e.  ZZ
3938a1i 9 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2  e.  ZZ )
40 dvdsmultr1 12186 . . . . . . . 8  |-  ( ( ( ( 2 ^ P )  -  1 )  e.  ZZ  /\  ( 2 ^ ( P  -  1 ) )  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) )  ->  ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ ( P  -  1 ) )  x.  2 ) ) )
4127, 25, 39, 40syl3anc 1250 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) )  ->  ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ ( P  -  1 ) )  x.  2 ) ) )
42 2cn 9114 . . . . . . . . . 10  |-  2  e.  CC
43 expm1t 10719 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  P  e.  NN )  ->  ( 2 ^ P
)  =  ( ( 2 ^ ( P  -  1 ) )  x.  2 ) )
4442, 3, 43sylancr 414 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  =  ( ( 2 ^ ( P  -  1 ) )  x.  2 ) )
4515, 44eqtr2d 2240 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( P  -  1 ) )  x.  2 )  =  ( ( ( 2 ^ P
)  -  1 )  +  1 ) )
4645breq2d 4059 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
( 2 ^ ( P  -  1 ) )  x.  2 )  <-> 
( ( 2 ^ P )  -  1 )  ||  ( ( ( 2 ^ P
)  -  1 )  +  1 ) ) )
4741, 46sylibd 149 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) )  ->  ( ( 2 ^ P )  - 
1 )  ||  (
( ( 2 ^ P )  -  1 )  +  1 ) ) )
4837, 47mtod 665 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  -.  ( ( 2 ^ P )  - 
1 )  ||  (
2 ^ ( P  -  1 ) ) )
49 simpr 110 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  Prime )
50 coprm 12510 . . . . . 6  |-  ( ( ( ( 2 ^ P )  -  1 )  e.  Prime  /\  (
2 ^ ( P  -  1 ) )  e.  ZZ )  -> 
( -.  ( ( 2 ^ P )  -  1 )  ||  ( 2 ^ ( P  -  1 ) )  <->  ( ( ( 2 ^ P )  -  1 )  gcd  ( 2 ^ ( P  -  1 ) ) )  =  1 ) )
5149, 25, 50syl2anc 411 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( -.  ( ( 2 ^ P )  -  1 )  ||  ( 2 ^ ( P  -  1 ) )  <->  ( ( ( 2 ^ P )  -  1 )  gcd  ( 2 ^ ( P  -  1 ) ) )  =  1 ) )
5248, 51mpbid 147 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( ( 2 ^ P )  - 
1 )  gcd  (
2 ^ ( P  -  1 ) ) )  =  1 )
5328, 52eqtrd 2239 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( P  -  1 ) )  gcd  (
( 2 ^ P
)  -  1 ) )  =  1 )
54 sgmmul 15512 . . 3  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ ( P  -  1 ) )  e.  NN  /\  ( ( 2 ^ P )  -  1 )  e.  NN  /\  ( ( 2 ^ ( P  -  1 ) )  gcd  (
( 2 ^ P
)  -  1 ) )  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ ( P  -  1 ) )  x.  (
( 2 ^ P
)  -  1 ) ) )  =  ( ( 1  sigma  ( 2 ^ ( P  - 
1 ) ) )  x.  ( 1  sigma 
( ( 2 ^ P )  -  1 ) ) ) )
5518, 22, 24, 53, 54syl13anc 1252 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( 1 
sigma  ( 2 ^ ( P  -  1 ) ) )  x.  (
1  sigma  ( ( 2 ^ P )  - 
1 ) ) ) )
56 subcl 8278 . . . 4  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2 ^ P )  -  1 )  e.  CC )
5712, 13, 56sylancl 413 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  CC )
5812, 57mulcomd 8101 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  x.  (
( 2 ^ P
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  x.  ( 2 ^ P ) ) )
5917, 55, 583eqtr4d 2249 1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  - 
1 ) ) )  =  ( ( 2 ^ P )  x.  ( ( 2 ^ P )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   class class class wbr 4047   ` cfv 5276  (class class class)co 5951   CCcc 7930   1c1 7933    + caddc 7935    x. cmul 7937    < clt 8114    - cmin 8250   NNcn 9043   2c2 9094   NN0cn0 9302   ZZcz 9379   ZZ>=cuz 9655   ^cexp 10690    || cdvds 12142    gcd cgcd 12318   Primecprime 12473    sigma csgm 15497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-pre-suploc 8053  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-disj 4024  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-map 6744  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-xnn0 9366  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-ico 10023  df-icc 10024  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-fac 10878  df-bc 10900  df-ihash 10928  df-shft 11170  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ef 12003  df-e 12004  df-dvds 12143  df-gcd 12319  df-prm 12474  df-pc 12652  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-tx 14769  df-cncf 15087  df-limced 15172  df-dvap 15173  df-relog 15374  df-rpcxp 15375  df-sgm 15498
This theorem is referenced by:  perfect  15517
  Copyright terms: Public domain W3C validator