| Step | Hyp | Ref
| Expression |
| 1 | | simpr1 1005 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑀 ∈ ℕ) |
| 2 | | simpr2 1006 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ) |
| 3 | | simpr3 1007 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 gcd 𝑁) = 1) |
| 4 | | eqid 2196 |
. . 3
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
| 5 | | eqid 2196 |
. . 3
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| 6 | | eqid 2196 |
. . 3
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
| 7 | | ssrab2 3269 |
. . . . . 6
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ ℕ |
| 8 | | simpr 110 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) |
| 9 | 7, 8 | sselid 3182 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ ℕ) |
| 10 | 9 | nnrpd 9771 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ ℝ+) |
| 11 | | simpll 527 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝐴 ∈ ℂ) |
| 12 | 10, 11 | rpcncxpcld 15173 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → (𝑗↑𝑐𝐴) ∈ ℂ) |
| 13 | | ssrab2 3269 |
. . . . . 6
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
| 14 | | simpr 110 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 15 | 13, 14 | sselid 3182 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ ℕ) |
| 16 | 15 | nnrpd 9771 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ ℝ+) |
| 17 | | simpll 527 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝐴 ∈ ℂ) |
| 18 | 16, 17 | rpcncxpcld 15173 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑘↑𝑐𝐴) ∈ ℂ) |
| 19 | 9 | adantrr 479 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℕ) |
| 20 | 19 | nnrpd 9771 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℝ+) |
| 21 | 15 | adantrl 478 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℕ) |
| 22 | 21 | nnrpd 9771 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℝ+) |
| 23 | | simpll 527 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝐴 ∈ ℂ) |
| 24 | | rpmulcxp 15155 |
. . . . 5
⊢ ((𝑗 ∈ ℝ+
∧ 𝑘 ∈
ℝ+ ∧ 𝐴
∈ ℂ) → ((𝑗
· 𝑘)↑𝑐𝐴) = ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴))) |
| 25 | 20, 22, 23, 24 | syl3anc 1249 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → ((𝑗 · 𝑘)↑𝑐𝐴) = ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴))) |
| 26 | 25 | eqcomd 2202 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴)) = ((𝑗 · 𝑘)↑𝑐𝐴)) |
| 27 | | oveq1 5930 |
. . 3
⊢ (𝑖 = (𝑗 · 𝑘) → (𝑖↑𝑐𝐴) = ((𝑗 · 𝑘)↑𝑐𝐴)) |
| 28 | 1, 2, 3, 4, 5, 6, 12, 18, 26, 27 | fsumdvdsmul 15237 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
| 29 | | sgmval 15229 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴)) |
| 30 | 1, 29 | syldan 282 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴)) |
| 31 | | sgmval 15229 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) |
| 32 | 2, 31 | syldan 282 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) |
| 33 | 30, 32 | oveq12d 5941 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)) = (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴))) |
| 34 | 1, 2 | nnmulcld 9041 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 · 𝑁) ∈ ℕ) |
| 35 | | sgmval 15229 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑁) ∈ ℕ) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
| 36 | 34, 35 | syldan 282 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
| 37 | 28, 33, 36 | 3eqtr4rd 2240 |
1
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) |