Proof of Theorem upgr2wlkdc
| Step | Hyp | Ref
| Expression |
| 1 | | simprl 529 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝐹(Walks‘𝐺)𝑃) |
| 2 | | upgr2wlk.v |
. . . . . . . . . 10
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | | upgr2wlk.i |
. . . . . . . . . 10
⊢ 𝐼 = (iEdg‘𝐺) |
| 4 | 2, 3 | upgriswlkdc 16081 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
| 5 | 4 | adantr 276 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
| 6 | 1, 5 | mpbid 147 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 7 | 6 | simp1d 1033 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝐹 ∈ Word dom 𝐼) |
| 8 | | wrdf 11085 |
. . . . . 6
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 9 | 7, 8 | syl 14 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 10 | | simprr 531 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝐹 ≈
2o) |
| 11 | | hash2en 11073 |
. . . . . . . . 9
⊢ (𝐹 ≈ 2o ↔
(𝐹 ∈ Fin ∧
(♯‘𝐹) =
2)) |
| 12 | 11 | simprbi 275 |
. . . . . . . 8
⊢ (𝐹 ≈ 2o →
(♯‘𝐹) =
2) |
| 13 | 10, 12 | syl 14 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
(♯‘𝐹) =
2) |
| 14 | 13 | oveq2d 6023 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
(0..^(♯‘𝐹)) =
(0..^2)) |
| 15 | 14 | feq2d 5461 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ↔ 𝐹:(0..^2)⟶dom 𝐼)) |
| 16 | 9, 15 | mpbid 147 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝐹:(0..^2)⟶dom 𝐼) |
| 17 | 6 | simp2d 1034 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 18 | 13 | oveq2d 6023 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
(0...(♯‘𝐹)) =
(0...2)) |
| 19 | 18 | feq2d 5461 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
| 20 | 17, 19 | mpbid 147 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → 𝑃:(0...2)⟶𝑉) |
| 21 | 6 | simp3d 1035 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
∀𝑘 ∈
(0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 22 | | simpl 109 |
. . . . . . 7
⊢
((DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 23 | 22 | ralimi 2593 |
. . . . . 6
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 24 | 21, 23 | syl 14 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
∀𝑘 ∈
(0..^(♯‘𝐹))DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 25 | | oveq2 6015 |
. . . . . . 7
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = (0..^2)) |
| 26 | | fzo0to2pr 10432 |
. . . . . . 7
⊢ (0..^2) =
{0, 1} |
| 27 | 25, 26 | eqtrdi 2278 |
. . . . . 6
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = {0, 1}) |
| 28 | 13, 27 | syl 14 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
(0..^(♯‘𝐹)) =
{0, 1}) |
| 29 | 24, 28 | raleqtrdv 2736 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
∀𝑘 ∈ {0,
1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 30 | 16, 20, 29 | 3jca 1201 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → (𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)))) |
| 31 | | simpr 110 |
. . . . . 6
⊢
((DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 32 | 31 | ralimi 2593 |
. . . . 5
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 33 | 21, 32 | syl 14 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 34 | 28 | raleqdv 2734 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
(∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 35 | | 2wlklem 16095 |
. . . . 5
⊢
(∀𝑘 ∈
{0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 36 | 34, 35 | bitrdi 196 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) →
(∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
| 37 | 33, 36 | mpbid 147 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 38 | 30, 37 | jca 306 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) → ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
| 39 | | simprl1 1066 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹:(0..^2)⟶dom 𝐼) |
| 40 | | 2nn0 9394 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 41 | | iswrdinn0 11084 |
. . . . . 6
⊢ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 2 ∈
ℕ0) → 𝐹 ∈ Word dom 𝐼) |
| 42 | 39, 40, 41 | sylancl 413 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹 ∈ Word dom 𝐼) |
| 43 | | simprl2 1067 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝑃:(0...2)⟶𝑉) |
| 44 | | fnfzo0hash 11065 |
. . . . . . . . 9
⊢ ((2
∈ ℕ0 ∧ 𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2) |
| 45 | 40, 39, 44 | sylancr 414 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (♯‘𝐹) = 2) |
| 46 | 45 | oveq2d 6023 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) →
(0...(♯‘𝐹)) =
(0...2)) |
| 47 | 46 | feq2d 5461 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
| 48 | 43, 47 | mpbird 167 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 49 | | simprl3 1068 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ {0,
1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 50 | 45, 27 | syl 14 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) →
(0..^(♯‘𝐹)) =
{0, 1}) |
| 51 | 49, 50 | raleqtrrdv 2738 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈
(0..^(♯‘𝐹))DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) |
| 52 | | simprr 531 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 53 | 52, 35 | sylibr 134 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 54 | 53, 50 | raleqtrrdv 2738 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 55 | 51, 54 | jca 306 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (∀𝑘 ∈
(0..^(♯‘𝐹))DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 56 | | r19.26 2657 |
. . . . . 6
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ (∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 57 | 55, 56 | sylibr 134 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈
(0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
| 58 | 42, 48, 57 | 3jca 1201 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
| 59 | 4 | adantr 276 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
| 60 | 58, 59 | mpbird 167 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹(Walks‘𝐺)𝑃) |
| 61 | | 0z 9465 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 62 | | 2z 9482 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 63 | | fzofig 10662 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ 2 ∈ ℤ) → (0..^2) ∈
Fin) |
| 64 | 61, 62, 63 | mp2an 426 |
. . . . . . . 8
⊢ (0..^2)
∈ Fin |
| 65 | | fex 5872 |
. . . . . . . 8
⊢ ((𝐹:(0..^2)⟶dom 𝐼 ∧ (0..^2) ∈ Fin)
→ 𝐹 ∈
V) |
| 66 | 64, 65 | mpan2 425 |
. . . . . . 7
⊢ (𝐹:(0..^2)⟶dom 𝐼 → 𝐹 ∈ V) |
| 67 | | ffun 5476 |
. . . . . . 7
⊢ (𝐹:(0..^2)⟶dom 𝐼 → Fun 𝐹) |
| 68 | | fundmeng 6968 |
. . . . . . 7
⊢ ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| 69 | 66, 67, 68 | syl2anc 411 |
. . . . . 6
⊢ (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 ≈ 𝐹) |
| 70 | 69 | ensymd 6943 |
. . . . 5
⊢ (𝐹:(0..^2)⟶dom 𝐼 → 𝐹 ≈ dom 𝐹) |
| 71 | | fdm 5479 |
. . . . . . 7
⊢ (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 = (0..^2)) |
| 72 | 71, 26 | eqtrdi 2278 |
. . . . . 6
⊢ (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 = {0, 1}) |
| 73 | | 1z 9480 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 74 | | 0ne1 9185 |
. . . . . . 7
⊢ 0 ≠
1 |
| 75 | | pr2nelem 7372 |
. . . . . . 7
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ≠ 1) → {0, 1} ≈
2o) |
| 76 | 61, 73, 74, 75 | mp3an 1371 |
. . . . . 6
⊢ {0, 1}
≈ 2o |
| 77 | 72, 76 | eqbrtrdi 4122 |
. . . . 5
⊢ (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 ≈ 2o) |
| 78 | | entr 6944 |
. . . . 5
⊢ ((𝐹 ≈ dom 𝐹 ∧ dom 𝐹 ≈ 2o) → 𝐹 ≈
2o) |
| 79 | 70, 77, 78 | syl2anc 411 |
. . . 4
⊢ (𝐹:(0..^2)⟶dom 𝐼 → 𝐹 ≈ 2o) |
| 80 | 39, 79 | syl 14 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹 ≈ 2o) |
| 81 | 60, 80 | jca 306 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o)) |
| 82 | 38, 81 | impbida 598 |
1
⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐹 ≈ 2o) ↔ ((𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃‘𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |