ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgr2wlkdc GIF version

Theorem upgr2wlkdc 16096
Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgr2wlk.v 𝑉 = (Vtx‘𝐺)
upgr2wlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2wlkdc (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o) ↔ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐺   𝑘,𝐼   𝑘,𝑉

Proof of Theorem upgr2wlkdc
StepHypRef Expression
1 simprl 529 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝐹(Walks‘𝐺)𝑃)
2 upgr2wlk.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
3 upgr2wlk.i . . . . . . . . . 10 𝐼 = (iEdg‘𝐺)
42, 3upgriswlkdc 16081 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
54adantr 276 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
61, 5mpbid 147 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
76simp1d 1033 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝐹 ∈ Word dom 𝐼)
8 wrdf 11085 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
97, 8syl 14 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
10 simprr 531 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝐹 ≈ 2o)
11 hash2en 11073 . . . . . . . . 9 (𝐹 ≈ 2o ↔ (𝐹 ∈ Fin ∧ (♯‘𝐹) = 2))
1211simprbi 275 . . . . . . . 8 (𝐹 ≈ 2o → (♯‘𝐹) = 2)
1310, 12syl 14 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (♯‘𝐹) = 2)
1413oveq2d 6023 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (0..^(♯‘𝐹)) = (0..^2))
1514feq2d 5461 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^2)⟶dom 𝐼))
169, 15mpbid 147 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝐹:(0..^2)⟶dom 𝐼)
176simp2d 1034 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
1813oveq2d 6023 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (0...(♯‘𝐹)) = (0...2))
1918feq2d 5461 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
2017, 19mpbid 147 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → 𝑃:(0...2)⟶𝑉)
216simp3d 1035 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
22 simpl 109 . . . . . . 7 ((DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
2322ralimi 2593 . . . . . 6 (∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
2421, 23syl 14 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → ∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
25 oveq2 6015 . . . . . . 7 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
26 fzo0to2pr 10432 . . . . . . 7 (0..^2) = {0, 1}
2725, 26eqtrdi 2278 . . . . . 6 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
2813, 27syl 14 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (0..^(♯‘𝐹)) = {0, 1})
2924, 28raleqtrdv 2736 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
3016, 20, 293jca 1201 . . 3 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
31 simpr 110 . . . . . 6 ((DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3231ralimi 2593 . . . . 5 (∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3321, 32syl 14 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3428raleqdv 2734 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
35 2wlklem 16095 . . . . 5 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
3634, 35bitrdi 196 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
3733, 36mpbid 147 . . 3 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
3830, 37jca 306 . 2 ((𝐺 ∈ UPGraph ∧ (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o)) → ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
39 simprl1 1066 . . . . . 6 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹:(0..^2)⟶dom 𝐼)
40 2nn0 9394 . . . . . 6 2 ∈ ℕ0
41 iswrdinn0 11084 . . . . . 6 ((𝐹:(0..^2)⟶dom 𝐼 ∧ 2 ∈ ℕ0) → 𝐹 ∈ Word dom 𝐼)
4239, 40, 41sylancl 413 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹 ∈ Word dom 𝐼)
43 simprl2 1067 . . . . . 6 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝑃:(0...2)⟶𝑉)
44 fnfzo0hash 11065 . . . . . . . . 9 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (♯‘𝐹) = 2)
4540, 39, 44sylancr 414 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (♯‘𝐹) = 2)
4645oveq2d 6023 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (0...(♯‘𝐹)) = (0...2))
4746feq2d 5461 . . . . . 6 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
4843, 47mpbird 167 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
49 simprl3 1068 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
5045, 27syl 14 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (0..^(♯‘𝐹)) = {0, 1})
5149, 50raleqtrrdv 2738 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
52 simprr 531 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
5352, 35sylibr 134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5453, 50raleqtrrdv 2738 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5551, 54jca 306 . . . . . 6 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
56 r19.26 2657 . . . . . 6 (∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (∀𝑘 ∈ (0..^(♯‘𝐹))DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
5755, 56sylibr 134 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
5842, 48, 573jca 1201 . . . 4 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
594adantr 276 . . . 4 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
6058, 59mpbird 167 . . 3 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹(Walks‘𝐺)𝑃)
61 0z 9465 . . . . . . . . 9 0 ∈ ℤ
62 2z 9482 . . . . . . . . 9 2 ∈ ℤ
63 fzofig 10662 . . . . . . . . 9 ((0 ∈ ℤ ∧ 2 ∈ ℤ) → (0..^2) ∈ Fin)
6461, 62, 63mp2an 426 . . . . . . . 8 (0..^2) ∈ Fin
65 fex 5872 . . . . . . . 8 ((𝐹:(0..^2)⟶dom 𝐼 ∧ (0..^2) ∈ Fin) → 𝐹 ∈ V)
6664, 65mpan2 425 . . . . . . 7 (𝐹:(0..^2)⟶dom 𝐼𝐹 ∈ V)
67 ffun 5476 . . . . . . 7 (𝐹:(0..^2)⟶dom 𝐼 → Fun 𝐹)
68 fundmeng 6968 . . . . . . 7 ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹𝐹)
6966, 67, 68syl2anc 411 . . . . . 6 (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹𝐹)
7069ensymd 6943 . . . . 5 (𝐹:(0..^2)⟶dom 𝐼𝐹 ≈ dom 𝐹)
71 fdm 5479 . . . . . . 7 (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 = (0..^2))
7271, 26eqtrdi 2278 . . . . . 6 (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 = {0, 1})
73 1z 9480 . . . . . . 7 1 ∈ ℤ
74 0ne1 9185 . . . . . . 7 0 ≠ 1
75 pr2nelem 7372 . . . . . . 7 ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ≠ 1) → {0, 1} ≈ 2o)
7661, 73, 74, 75mp3an 1371 . . . . . 6 {0, 1} ≈ 2o
7772, 76eqbrtrdi 4122 . . . . 5 (𝐹:(0..^2)⟶dom 𝐼 → dom 𝐹 ≈ 2o)
78 entr 6944 . . . . 5 ((𝐹 ≈ dom 𝐹 ∧ dom 𝐹 ≈ 2o) → 𝐹 ≈ 2o)
7970, 77, 78syl2anc 411 . . . 4 (𝐹:(0..^2)⟶dom 𝐼𝐹 ≈ 2o)
8039, 79syl 14 . . 3 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → 𝐹 ≈ 2o)
8160, 80jca 306 . 2 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) → (𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o))
8238, 81impbida 598 1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃𝐹 ≈ 2o) ↔ ((𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ∀𝑘 ∈ {0, 1}DECID (𝑃𝑘) = (𝑃‘(𝑘 + 1))) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508  Vcvv 2799  {cpr 3667   class class class wbr 4083  dom cdm 4719  Fun wfun 5312  wf 5314  cfv 5318  (class class class)co 6007  2oc2o 6562  cen 6893  Fincfn 6895  0cc0 8007  1c1 8008   + caddc 8010  2c2 9169  0cn0 9377  cz 9454  ...cfz 10212  ..^cfzo 10346  chash 11005  Word cword 11079  Vtxcvtx 15821  iEdgciedg 15822  UPGraphcupgr 15899  Walkscwlks 16038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-uhgrm 15877  df-upgren 15901  df-wlks 16039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator