ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen GIF version

Theorem xnn0nnen 10529
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen 0* ≈ ℕ

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5375 . . . . . . . 8 ( I ↾ ℕ0) Fn ℕ0
2 pnfex 8080 . . . . . . . . 9 +∞ ∈ V
3 neg1z 9358 . . . . . . . . . 10 -1 ∈ ℤ
43elexi 2775 . . . . . . . . 9 -1 ∈ V
52, 4fnsn 5312 . . . . . . . 8 {⟨+∞, -1⟩} Fn {+∞}
61, 5pm3.2i 272 . . . . . . 7 (( I ↾ ℕ0) Fn ℕ0 ∧ {⟨+∞, -1⟩} Fn {+∞})
7 disj 3499 . . . . . . . 8 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
8 nn0nepnf 9320 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
9 nelsn 3657 . . . . . . . . 9 (𝑥 ≠ +∞ → ¬ 𝑥 ∈ {+∞})
108, 9syl 14 . . . . . . . 8 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
117, 10mprgbir 2555 . . . . . . 7 (ℕ0 ∩ {+∞}) = ∅
12 fnun 5364 . . . . . . 7 (((( I ↾ ℕ0) Fn ℕ0 ∧ {⟨+∞, -1⟩} Fn {+∞}) ∧ (ℕ0 ∩ {+∞}) = ∅) → (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}))
136, 11, 12mp2an 426 . . . . . 6 (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞})
14 uncom 3307 . . . . . . 7 (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0))
15 df-xnn0 9313 . . . . . . . 8 0* = (ℕ0 ∪ {+∞})
1615eqcomi 2200 . . . . . . 7 (ℕ0 ∪ {+∞}) = ℕ0*
17 fneq12 5351 . . . . . . 7 (((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) ∧ (ℕ0 ∪ {+∞}) = ℕ0*) → ((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*))
1814, 16, 17mp2an 426 . . . . . 6 ((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*)
1913, 18mpbi 145 . . . . 5 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*
204, 2fnsn 5312 . . . . . . . . . 10 {⟨-1, +∞⟩} Fn {-1}
2120, 1pm3.2i 272 . . . . . . . . 9 ({⟨-1, +∞⟩} Fn {-1} ∧ ( I ↾ ℕ0) Fn ℕ0)
22 disj 3499 . . . . . . . . . 10 (({-1} ∩ ℕ0) = ∅ ↔ ∀𝑥 ∈ {-1} ¬ 𝑥 ∈ ℕ0)
23 neg1lt0 9098 . . . . . . . . . . . 12 -1 < 0
24 nn0nlt0 9275 . . . . . . . . . . . 12 (-1 ∈ ℕ0 → ¬ -1 < 0)
2523, 24mt2 641 . . . . . . . . . . 11 ¬ -1 ∈ ℕ0
26 elsni 3640 . . . . . . . . . . . 12 (𝑥 ∈ {-1} → 𝑥 = -1)
2726eleq1d 2265 . . . . . . . . . . 11 (𝑥 ∈ {-1} → (𝑥 ∈ ℕ0 ↔ -1 ∈ ℕ0))
2825, 27mtbiri 676 . . . . . . . . . 10 (𝑥 ∈ {-1} → ¬ 𝑥 ∈ ℕ0)
2922, 28mprgbir 2555 . . . . . . . . 9 ({-1} ∩ ℕ0) = ∅
30 fnun 5364 . . . . . . . . 9 ((({⟨-1, +∞⟩} Fn {-1} ∧ ( I ↾ ℕ0) Fn ℕ0) ∧ ({-1} ∩ ℕ0) = ∅) → ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0))
3121, 29, 30mp2an 426 . . . . . . . 8 ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0)
32 cnvun 5075 . . . . . . . . . 10 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0))
332, 4cnvsn 5152 . . . . . . . . . . 11 {⟨+∞, -1⟩} = {⟨-1, +∞⟩}
34 cnvresid 5332 . . . . . . . . . . 11 ( I ↾ ℕ0) = ( I ↾ ℕ0)
3533, 34uneq12i 3315 . . . . . . . . . 10 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0))
3632, 35eqtri 2217 . . . . . . . . 9 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0))
3736fneq1i 5352 . . . . . . . 8 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0) ↔ ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0))
3831, 37mpbir 146 . . . . . . 7 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0)
39 fzosn 10281 . . . . . . . . . . 11 (-1 ∈ ℤ → (-1..^(-1 + 1)) = {-1})
403, 39ax-mp 5 . . . . . . . . . 10 (-1..^(-1 + 1)) = {-1}
41 ax-1cn 7972 . . . . . . . . . . . . 13 1 ∈ ℂ
4241, 41negsubdii 8311 . . . . . . . . . . . 12 -(1 − 1) = (-1 + 1)
43 1m1e0 9059 . . . . . . . . . . . . 13 (1 − 1) = 0
4441, 41subcli 8302 . . . . . . . . . . . . . 14 (1 − 1) ∈ ℂ
45 negeq0 8280 . . . . . . . . . . . . . 14 ((1 − 1) ∈ ℂ → ((1 − 1) = 0 ↔ -(1 − 1) = 0))
4644, 45ax-mp 5 . . . . . . . . . . . . 13 ((1 − 1) = 0 ↔ -(1 − 1) = 0)
4743, 46mpbi 145 . . . . . . . . . . . 12 -(1 − 1) = 0
4842, 47eqtr3i 2219 . . . . . . . . . . 11 (-1 + 1) = 0
4948oveq2i 5933 . . . . . . . . . 10 (-1..^(-1 + 1)) = (-1..^0)
5040, 49eqtr3i 2219 . . . . . . . . 9 {-1} = (-1..^0)
51 nn0uz 9636 . . . . . . . . 9 0 = (ℤ‘0)
5250, 51uneq12i 3315 . . . . . . . 8 ({-1} ∪ ℕ0) = ((-1..^0) ∪ (ℤ‘0))
5352fneq2i 5353 . . . . . . 7 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0)))
5438, 53mpbi 145 . . . . . 6 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0))
55 0z 9337 . . . . . . . . 9 0 ∈ ℤ
56 neg1rr 9096 . . . . . . . . . 10 -1 ∈ ℝ
57 0re 8026 . . . . . . . . . 10 0 ∈ ℝ
5856, 57, 23ltleii 8129 . . . . . . . . 9 -1 ≤ 0
59 eluz2 9607 . . . . . . . . 9 (0 ∈ (ℤ‘-1) ↔ (-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ -1 ≤ 0))
603, 55, 58, 59mpbir3an 1181 . . . . . . . 8 0 ∈ (ℤ‘-1)
61 fzouzsplit 10255 . . . . . . . 8 (0 ∈ (ℤ‘-1) → (ℤ‘-1) = ((-1..^0) ∪ (ℤ‘0)))
6260, 61ax-mp 5 . . . . . . 7 (ℤ‘-1) = ((-1..^0) ∪ (ℤ‘0))
6362fneq2i 5353 . . . . . 6 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0)))
6454, 63mpbir 146 . . . . 5 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1)
6519, 64pm3.2i 272 . . . 4 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1))
66 dff1o4 5512 . . . 4 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1) ↔ (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1)))
6765, 66mpbir 146 . . 3 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1)
68 nn0ex 9255 . . . . . 6 0 ∈ V
692snex 4218 . . . . . 6 {+∞} ∈ V
7068, 69unex 4476 . . . . 5 (ℕ0 ∪ {+∞}) ∈ V
7115, 70eqeltri 2269 . . . 4 0* ∈ V
7271f1oen 6818 . . 3 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1) → ℕ0* ≈ (ℤ‘-1))
7367, 72ax-mp 5 . 2 0* ≈ (ℤ‘-1)
74 uzennn 10528 . . 3 (-1 ∈ ℤ → (ℤ‘-1) ≈ ℕ)
753, 74ax-mp 5 . 2 (ℤ‘-1) ≈ ℕ
7673, 75entri 6845 1 0* ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  Vcvv 2763  cun 3155  cin 3156  c0 3450  {csn 3622  cop 3625   class class class wbr 4033   I cid 4323  ccnv 4662  cres 4665   Fn wfn 5253  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cen 6797  cc 7877  0cc0 7879  1c1 7880   + caddc 7882  +∞cpnf 8058   < clt 8061  cle 8062  cmin 8197  -cneg 8198  cn 8990  0cn0 9249  0*cxnn0 9312  cz 9326  cuz 9601  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-xnn0 9313  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  nninfct  12208
  Copyright terms: Public domain W3C validator