ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen GIF version

Theorem xnn0nnen 10654
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen 0* ≈ ℕ

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5440 . . . . . . . 8 ( I ↾ ℕ0) Fn ℕ0
2 pnfex 8196 . . . . . . . . 9 +∞ ∈ V
3 neg1z 9474 . . . . . . . . . 10 -1 ∈ ℤ
43elexi 2812 . . . . . . . . 9 -1 ∈ V
52, 4fnsn 5374 . . . . . . . 8 {⟨+∞, -1⟩} Fn {+∞}
61, 5pm3.2i 272 . . . . . . 7 (( I ↾ ℕ0) Fn ℕ0 ∧ {⟨+∞, -1⟩} Fn {+∞})
7 disj 3540 . . . . . . . 8 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
8 nn0nepnf 9436 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
9 nelsn 3701 . . . . . . . . 9 (𝑥 ≠ +∞ → ¬ 𝑥 ∈ {+∞})
108, 9syl 14 . . . . . . . 8 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
117, 10mprgbir 2588 . . . . . . 7 (ℕ0 ∩ {+∞}) = ∅
12 fnun 5428 . . . . . . 7 (((( I ↾ ℕ0) Fn ℕ0 ∧ {⟨+∞, -1⟩} Fn {+∞}) ∧ (ℕ0 ∩ {+∞}) = ∅) → (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}))
136, 11, 12mp2an 426 . . . . . 6 (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞})
14 uncom 3348 . . . . . . 7 (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0))
15 df-xnn0 9429 . . . . . . . 8 0* = (ℕ0 ∪ {+∞})
1615eqcomi 2233 . . . . . . 7 (ℕ0 ∪ {+∞}) = ℕ0*
17 fneq12 5413 . . . . . . 7 (((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) ∧ (ℕ0 ∪ {+∞}) = ℕ0*) → ((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*))
1814, 16, 17mp2an 426 . . . . . 6 ((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*)
1913, 18mpbi 145 . . . . 5 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*
204, 2fnsn 5374 . . . . . . . . . 10 {⟨-1, +∞⟩} Fn {-1}
2120, 1pm3.2i 272 . . . . . . . . 9 ({⟨-1, +∞⟩} Fn {-1} ∧ ( I ↾ ℕ0) Fn ℕ0)
22 disj 3540 . . . . . . . . . 10 (({-1} ∩ ℕ0) = ∅ ↔ ∀𝑥 ∈ {-1} ¬ 𝑥 ∈ ℕ0)
23 neg1lt0 9214 . . . . . . . . . . . 12 -1 < 0
24 nn0nlt0 9391 . . . . . . . . . . . 12 (-1 ∈ ℕ0 → ¬ -1 < 0)
2523, 24mt2 643 . . . . . . . . . . 11 ¬ -1 ∈ ℕ0
26 elsni 3684 . . . . . . . . . . . 12 (𝑥 ∈ {-1} → 𝑥 = -1)
2726eleq1d 2298 . . . . . . . . . . 11 (𝑥 ∈ {-1} → (𝑥 ∈ ℕ0 ↔ -1 ∈ ℕ0))
2825, 27mtbiri 679 . . . . . . . . . 10 (𝑥 ∈ {-1} → ¬ 𝑥 ∈ ℕ0)
2922, 28mprgbir 2588 . . . . . . . . 9 ({-1} ∩ ℕ0) = ∅
30 fnun 5428 . . . . . . . . 9 ((({⟨-1, +∞⟩} Fn {-1} ∧ ( I ↾ ℕ0) Fn ℕ0) ∧ ({-1} ∩ ℕ0) = ∅) → ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0))
3121, 29, 30mp2an 426 . . . . . . . 8 ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0)
32 cnvun 5133 . . . . . . . . . 10 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0))
332, 4cnvsn 5210 . . . . . . . . . . 11 {⟨+∞, -1⟩} = {⟨-1, +∞⟩}
34 cnvresid 5394 . . . . . . . . . . 11 ( I ↾ ℕ0) = ( I ↾ ℕ0)
3533, 34uneq12i 3356 . . . . . . . . . 10 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0))
3632, 35eqtri 2250 . . . . . . . . 9 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0))
3736fneq1i 5414 . . . . . . . 8 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0) ↔ ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0))
3831, 37mpbir 146 . . . . . . 7 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0)
39 fzosn 10406 . . . . . . . . . . 11 (-1 ∈ ℤ → (-1..^(-1 + 1)) = {-1})
403, 39ax-mp 5 . . . . . . . . . 10 (-1..^(-1 + 1)) = {-1}
41 ax-1cn 8088 . . . . . . . . . . . . 13 1 ∈ ℂ
4241, 41negsubdii 8427 . . . . . . . . . . . 12 -(1 − 1) = (-1 + 1)
43 1m1e0 9175 . . . . . . . . . . . . 13 (1 − 1) = 0
4441, 41subcli 8418 . . . . . . . . . . . . . 14 (1 − 1) ∈ ℂ
45 negeq0 8396 . . . . . . . . . . . . . 14 ((1 − 1) ∈ ℂ → ((1 − 1) = 0 ↔ -(1 − 1) = 0))
4644, 45ax-mp 5 . . . . . . . . . . . . 13 ((1 − 1) = 0 ↔ -(1 − 1) = 0)
4743, 46mpbi 145 . . . . . . . . . . . 12 -(1 − 1) = 0
4842, 47eqtr3i 2252 . . . . . . . . . . 11 (-1 + 1) = 0
4948oveq2i 6011 . . . . . . . . . 10 (-1..^(-1 + 1)) = (-1..^0)
5040, 49eqtr3i 2252 . . . . . . . . 9 {-1} = (-1..^0)
51 nn0uz 9753 . . . . . . . . 9 0 = (ℤ‘0)
5250, 51uneq12i 3356 . . . . . . . 8 ({-1} ∪ ℕ0) = ((-1..^0) ∪ (ℤ‘0))
5352fneq2i 5415 . . . . . . 7 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0)))
5438, 53mpbi 145 . . . . . 6 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0))
55 0z 9453 . . . . . . . . 9 0 ∈ ℤ
56 neg1rr 9212 . . . . . . . . . 10 -1 ∈ ℝ
57 0re 8142 . . . . . . . . . 10 0 ∈ ℝ
5856, 57, 23ltleii 8245 . . . . . . . . 9 -1 ≤ 0
59 eluz2 9724 . . . . . . . . 9 (0 ∈ (ℤ‘-1) ↔ (-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ -1 ≤ 0))
603, 55, 58, 59mpbir3an 1203 . . . . . . . 8 0 ∈ (ℤ‘-1)
61 fzouzsplit 10373 . . . . . . . 8 (0 ∈ (ℤ‘-1) → (ℤ‘-1) = ((-1..^0) ∪ (ℤ‘0)))
6260, 61ax-mp 5 . . . . . . 7 (ℤ‘-1) = ((-1..^0) ∪ (ℤ‘0))
6362fneq2i 5415 . . . . . 6 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0)))
6454, 63mpbir 146 . . . . 5 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1)
6519, 64pm3.2i 272 . . . 4 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1))
66 dff1o4 5579 . . . 4 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1) ↔ (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1)))
6765, 66mpbir 146 . . 3 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1)
68 nn0ex 9371 . . . . . 6 0 ∈ V
692snex 4268 . . . . . 6 {+∞} ∈ V
7068, 69unex 4531 . . . . 5 (ℕ0 ∪ {+∞}) ∈ V
7115, 70eqeltri 2302 . . . 4 0* ∈ V
7271f1oen 6908 . . 3 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1) → ℕ0* ≈ (ℤ‘-1))
7367, 72ax-mp 5 . 2 0* ≈ (ℤ‘-1)
74 uzennn 10653 . . 3 (-1 ∈ ℤ → (ℤ‘-1) ≈ ℕ)
753, 74ax-mp 5 . 2 (ℤ‘-1) ≈ ℕ
7673, 75entri 6936 1 0* ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  Vcvv 2799  cun 3195  cin 3196  c0 3491  {csn 3666  cop 3669   class class class wbr 4082   I cid 4378  ccnv 4717  cres 4720   Fn wfn 5312  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  cen 6883  cc 7993  0cc0 7995  1c1 7996   + caddc 7998  +∞cpnf 8174   < clt 8177  cle 8178  cmin 8313  -cneg 8314  cn 9106  0cn0 9365  0*cxnn0 9428  cz 9442  cuz 9718  ..^cfzo 10334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-er 6678  df-en 6886  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-xnn0 9429  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335
This theorem is referenced by:  nninfct  12557
  Copyright terms: Public domain W3C validator