ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen GIF version

Theorem xnn0nnen 10580
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen 0* ≈ ℕ

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5392 . . . . . . . 8 ( I ↾ ℕ0) Fn ℕ0
2 pnfex 8125 . . . . . . . . 9 +∞ ∈ V
3 neg1z 9403 . . . . . . . . . 10 -1 ∈ ℤ
43elexi 2783 . . . . . . . . 9 -1 ∈ V
52, 4fnsn 5327 . . . . . . . 8 {⟨+∞, -1⟩} Fn {+∞}
61, 5pm3.2i 272 . . . . . . 7 (( I ↾ ℕ0) Fn ℕ0 ∧ {⟨+∞, -1⟩} Fn {+∞})
7 disj 3508 . . . . . . . 8 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
8 nn0nepnf 9365 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
9 nelsn 3667 . . . . . . . . 9 (𝑥 ≠ +∞ → ¬ 𝑥 ∈ {+∞})
108, 9syl 14 . . . . . . . 8 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
117, 10mprgbir 2563 . . . . . . 7 (ℕ0 ∩ {+∞}) = ∅
12 fnun 5381 . . . . . . 7 (((( I ↾ ℕ0) Fn ℕ0 ∧ {⟨+∞, -1⟩} Fn {+∞}) ∧ (ℕ0 ∩ {+∞}) = ∅) → (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}))
136, 11, 12mp2an 426 . . . . . 6 (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞})
14 uncom 3316 . . . . . . 7 (( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0))
15 df-xnn0 9358 . . . . . . . 8 0* = (ℕ0 ∪ {+∞})
1615eqcomi 2208 . . . . . . 7 (ℕ0 ∪ {+∞}) = ℕ0*
17 fneq12 5366 . . . . . . 7 (((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) ∧ (ℕ0 ∪ {+∞}) = ℕ0*) → ((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*))
1814, 16, 17mp2an 426 . . . . . 6 ((( I ↾ ℕ0) ∪ {⟨+∞, -1⟩}) Fn (ℕ0 ∪ {+∞}) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*)
1913, 18mpbi 145 . . . . 5 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*
204, 2fnsn 5327 . . . . . . . . . 10 {⟨-1, +∞⟩} Fn {-1}
2120, 1pm3.2i 272 . . . . . . . . 9 ({⟨-1, +∞⟩} Fn {-1} ∧ ( I ↾ ℕ0) Fn ℕ0)
22 disj 3508 . . . . . . . . . 10 (({-1} ∩ ℕ0) = ∅ ↔ ∀𝑥 ∈ {-1} ¬ 𝑥 ∈ ℕ0)
23 neg1lt0 9143 . . . . . . . . . . . 12 -1 < 0
24 nn0nlt0 9320 . . . . . . . . . . . 12 (-1 ∈ ℕ0 → ¬ -1 < 0)
2523, 24mt2 641 . . . . . . . . . . 11 ¬ -1 ∈ ℕ0
26 elsni 3650 . . . . . . . . . . . 12 (𝑥 ∈ {-1} → 𝑥 = -1)
2726eleq1d 2273 . . . . . . . . . . 11 (𝑥 ∈ {-1} → (𝑥 ∈ ℕ0 ↔ -1 ∈ ℕ0))
2825, 27mtbiri 676 . . . . . . . . . 10 (𝑥 ∈ {-1} → ¬ 𝑥 ∈ ℕ0)
2922, 28mprgbir 2563 . . . . . . . . 9 ({-1} ∩ ℕ0) = ∅
30 fnun 5381 . . . . . . . . 9 ((({⟨-1, +∞⟩} Fn {-1} ∧ ( I ↾ ℕ0) Fn ℕ0) ∧ ({-1} ∩ ℕ0) = ∅) → ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0))
3121, 29, 30mp2an 426 . . . . . . . 8 ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0)
32 cnvun 5087 . . . . . . . . . 10 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0))
332, 4cnvsn 5164 . . . . . . . . . . 11 {⟨+∞, -1⟩} = {⟨-1, +∞⟩}
34 cnvresid 5347 . . . . . . . . . . 11 ( I ↾ ℕ0) = ( I ↾ ℕ0)
3533, 34uneq12i 3324 . . . . . . . . . 10 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0))
3632, 35eqtri 2225 . . . . . . . . 9 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) = ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0))
3736fneq1i 5367 . . . . . . . 8 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0) ↔ ({⟨-1, +∞⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0))
3831, 37mpbir 146 . . . . . . 7 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0)
39 fzosn 10332 . . . . . . . . . . 11 (-1 ∈ ℤ → (-1..^(-1 + 1)) = {-1})
403, 39ax-mp 5 . . . . . . . . . 10 (-1..^(-1 + 1)) = {-1}
41 ax-1cn 8017 . . . . . . . . . . . . 13 1 ∈ ℂ
4241, 41negsubdii 8356 . . . . . . . . . . . 12 -(1 − 1) = (-1 + 1)
43 1m1e0 9104 . . . . . . . . . . . . 13 (1 − 1) = 0
4441, 41subcli 8347 . . . . . . . . . . . . . 14 (1 − 1) ∈ ℂ
45 negeq0 8325 . . . . . . . . . . . . . 14 ((1 − 1) ∈ ℂ → ((1 − 1) = 0 ↔ -(1 − 1) = 0))
4644, 45ax-mp 5 . . . . . . . . . . . . 13 ((1 − 1) = 0 ↔ -(1 − 1) = 0)
4743, 46mpbi 145 . . . . . . . . . . . 12 -(1 − 1) = 0
4842, 47eqtr3i 2227 . . . . . . . . . . 11 (-1 + 1) = 0
4948oveq2i 5954 . . . . . . . . . 10 (-1..^(-1 + 1)) = (-1..^0)
5040, 49eqtr3i 2227 . . . . . . . . 9 {-1} = (-1..^0)
51 nn0uz 9682 . . . . . . . . 9 0 = (ℤ‘0)
5250, 51uneq12i 3324 . . . . . . . 8 ({-1} ∪ ℕ0) = ((-1..^0) ∪ (ℤ‘0))
5352fneq2i 5368 . . . . . . 7 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ({-1} ∪ ℕ0) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0)))
5438, 53mpbi 145 . . . . . 6 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0))
55 0z 9382 . . . . . . . . 9 0 ∈ ℤ
56 neg1rr 9141 . . . . . . . . . 10 -1 ∈ ℝ
57 0re 8071 . . . . . . . . . 10 0 ∈ ℝ
5856, 57, 23ltleii 8174 . . . . . . . . 9 -1 ≤ 0
59 eluz2 9653 . . . . . . . . 9 (0 ∈ (ℤ‘-1) ↔ (-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ -1 ≤ 0))
603, 55, 58, 59mpbir3an 1181 . . . . . . . 8 0 ∈ (ℤ‘-1)
61 fzouzsplit 10301 . . . . . . . 8 (0 ∈ (ℤ‘-1) → (ℤ‘-1) = ((-1..^0) ∪ (ℤ‘0)))
6260, 61ax-mp 5 . . . . . . 7 (ℤ‘-1) = ((-1..^0) ∪ (ℤ‘0))
6362fneq2i 5368 . . . . . 6 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1) ↔ ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ((-1..^0) ∪ (ℤ‘0)))
6454, 63mpbir 146 . . . . 5 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1)
6519, 64pm3.2i 272 . . . 4 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1))
66 dff1o4 5529 . . . 4 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1) ↔ (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn ℕ0*({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)) Fn (ℤ‘-1)))
6765, 66mpbir 146 . . 3 ({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1)
68 nn0ex 9300 . . . . . 6 0 ∈ V
692snex 4228 . . . . . 6 {+∞} ∈ V
7068, 69unex 4487 . . . . 5 (ℕ0 ∪ {+∞}) ∈ V
7115, 70eqeltri 2277 . . . 4 0* ∈ V
7271f1oen 6849 . . 3 (({⟨+∞, -1⟩} ∪ ( I ↾ ℕ0)):ℕ0*1-1-onto→(ℤ‘-1) → ℕ0* ≈ (ℤ‘-1))
7367, 72ax-mp 5 . 2 0* ≈ (ℤ‘-1)
74 uzennn 10579 . . 3 (-1 ∈ ℤ → (ℤ‘-1) ≈ ℕ)
753, 74ax-mp 5 . 2 (ℤ‘-1) ≈ ℕ
7673, 75entri 6877 1 0* ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1372  wcel 2175  wne 2375  Vcvv 2771  cun 3163  cin 3164  c0 3459  {csn 3632  cop 3635   class class class wbr 4043   I cid 4334  ccnv 4673  cres 4676   Fn wfn 5265  1-1-ontowf1o 5269  cfv 5270  (class class class)co 5943  cen 6824  cc 7922  0cc0 7924  1c1 7925   + caddc 7927  +∞cpnf 8103   < clt 8106  cle 8107  cmin 8242  -cneg 8243  cn 9035  0cn0 9294  0*cxnn0 9357  cz 9371  cuz 9647  ..^cfzo 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-er 6619  df-en 6827  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-xnn0 9358  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264
This theorem is referenced by:  nninfct  12333
  Copyright terms: Public domain W3C validator