ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasabl GIF version

Theorem imasabl 13466
Description: The image structure of an abelian group is an abelian group (imasgrp 13241 analog). (Contributed by AV, 22-Feb-2025.)
Hypotheses
Ref Expression
imasabl.u (𝜑𝑈 = (𝐹s 𝑅))
imasabl.v (𝜑𝑉 = (Base‘𝑅))
imasabl.p (𝜑+ = (+g𝑅))
imasabl.f (𝜑𝐹:𝑉onto𝐵)
imasabl.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasabl.r (𝜑𝑅 ∈ Abel)
imasabl.z 0 = (0g𝑅)
Assertion
Ref Expression
imasabl (𝜑 → (𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   0 ,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   𝑅(𝑎,𝑏)

Proof of Theorem imasabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasabl.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasabl.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasabl.p . . . 4 (𝜑+ = (+g𝑅))
4 imasabl.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
5 imasabl.e . . . 4 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasabl.r . . . . 5 (𝜑𝑅 ∈ Abel)
76ablgrpd 13420 . . . 4 (𝜑𝑅 ∈ Grp)
8 imasabl.z . . . 4 0 = (0g𝑅)
91, 2, 3, 4, 5, 7, 8imasgrp 13241 . . 3 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
101, 2, 4, 6imasbas 12950 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝑈))
1110eqcomd 2202 . . . . . . . . . 10 (𝜑 → (Base‘𝑈) = 𝐵)
1211eleq2d 2266 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝑈) ↔ 𝑥𝐵))
1311eleq2d 2266 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (Base‘𝑈) ↔ 𝑦𝐵))
1412, 13anbi12d 473 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) ↔ (𝑥𝐵𝑦𝐵)))
1514adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) ↔ (𝑥𝐵𝑦𝐵)))
16 foelcdmi 5613 . . . . . . . . . . . 12 ((𝐹:𝑉onto𝐵𝑥𝐵) → ∃𝑎𝑉 (𝐹𝑎) = 𝑥)
1716ex 115 . . . . . . . . . . 11 (𝐹:𝑉onto𝐵 → (𝑥𝐵 → ∃𝑎𝑉 (𝐹𝑎) = 𝑥))
18 foelcdmi 5613 . . . . . . . . . . . 12 ((𝐹:𝑉onto𝐵𝑦𝐵) → ∃𝑏𝑉 (𝐹𝑏) = 𝑦)
1918ex 115 . . . . . . . . . . 11 (𝐹:𝑉onto𝐵 → (𝑦𝐵 → ∃𝑏𝑉 (𝐹𝑏) = 𝑦))
2017, 19anim12d 335 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ((𝑥𝐵𝑦𝐵) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦)))
214, 20syl 14 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝑦𝐵) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦)))
2221adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥𝐵𝑦𝐵) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦)))
236ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑅 ∈ Abel)
242eleq2d 2266 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
2524biimpd 144 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
2625adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
2726imp 124 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → 𝑎 ∈ (Base‘𝑅))
2827adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑎 ∈ (Base‘𝑅))
292eleq2d 2266 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3029biimpd 144 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3130adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3231adantr 276 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
3332imp 124 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑏 ∈ (Base‘𝑅))
34 eqid 2196 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
35 eqid 2196 . . . . . . . . . . . . . . . . . . 19 (+g𝑅) = (+g𝑅)
3634, 35ablcom 13433 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Abel ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)𝑏) = (𝑏(+g𝑅)𝑎))
3723, 28, 33, 36syl3anc 1249 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (𝑎(+g𝑅)𝑏) = (𝑏(+g𝑅)𝑎))
3837fveq2d 5562 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑏(+g𝑅)𝑎)))
39 simplll 533 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝜑)
40 simpr 110 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → 𝑎𝑉)
4140adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑎𝑉)
42 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → 𝑏𝑉)
433eqcomd 2202 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (+g𝑅) = + )
4443oveqd 5939 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎(+g𝑅)𝑏) = (𝑎 + 𝑏))
4544fveq2d 5562 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑎 + 𝑏)))
4643oveqd 5939 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑝(+g𝑅)𝑞) = (𝑝 + 𝑞))
4746fveq2d 5562 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹‘(𝑝(+g𝑅)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
4845, 47eqeq12d 2211 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞)) ↔ (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
49483ad2ant1 1020 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞)) ↔ (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
505, 49sylibrd 169 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
51 eqid 2196 . . . . . . . . . . . . . . . . . 18 (+g𝑈) = (+g𝑈)
524, 50, 1, 2, 6, 35, 51imasaddval 12961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑉𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
5339, 41, 42, 52syl3anc 1249 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
544, 50, 1, 2, 6, 35, 51imasaddval 12961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝑉𝑎𝑉) → ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) = (𝐹‘(𝑏(+g𝑅)𝑎)))
5539, 42, 41, 54syl3anc 1249 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) = (𝐹‘(𝑏(+g𝑅)𝑎)))
5638, 53, 553eqtr4d 2239 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)))
5756adantr 276 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ ((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥)) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)))
58 oveq12 5931 . . . . . . . . . . . . . . . . 17 (((𝐹𝑎) = 𝑥 ∧ (𝐹𝑏) = 𝑦) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝑥(+g𝑈)𝑦))
5958ancoms 268 . . . . . . . . . . . . . . . 16 (((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝑥(+g𝑈)𝑦))
60 oveq12 5931 . . . . . . . . . . . . . . . 16 (((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥) → ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) = (𝑦(+g𝑈)𝑥))
6159, 60eqeq12d 2211 . . . . . . . . . . . . . . 15 (((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥) → (((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) ↔ (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
6261adantl 277 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ ((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥)) → (((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = ((𝐹𝑏)(+g𝑈)(𝐹𝑎)) ↔ (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
6357, 62mpbid 147 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ ((𝐹𝑏) = 𝑦 ∧ (𝐹𝑎) = 𝑥)) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))
6463exp32 365 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ((𝐹𝑏) = 𝑦 → ((𝐹𝑎) = 𝑥 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6564rexlimdva 2614 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → (∃𝑏𝑉 (𝐹𝑏) = 𝑦 → ((𝐹𝑎) = 𝑥 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6665com23 78 . . . . . . . . . 10 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ 𝑎𝑉) → ((𝐹𝑎) = 𝑥 → (∃𝑏𝑉 (𝐹𝑏) = 𝑦 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6766rexlimdva 2614 . . . . . . . . 9 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (∃𝑎𝑉 (𝐹𝑎) = 𝑥 → (∃𝑏𝑉 (𝐹𝑏) = 𝑦 → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))))
6867impd 254 . . . . . . . 8 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((∃𝑎𝑉 (𝐹𝑎) = 𝑥 ∧ ∃𝑏𝑉 (𝐹𝑏) = 𝑦) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
6922, 68syld 45 . . . . . . 7 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥𝐵𝑦𝐵) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
7015, 69sylbid 150 . . . . . 6 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
7170imp 124 . . . . 5 (((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) ∧ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))) → (𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))
7271ralrimivva 2579 . . . 4 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥))
73 simpr 110 . . . 4 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
7472, 73jca 306 . . 3 ((𝜑 ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))) → (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
759, 74mpdan 421 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
76 eqid 2196 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
7776, 51isabl2 13424 . . . 4 (𝑈 ∈ Abel ↔ (𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)))
7877anbi1i 458 . . 3 ((𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)) ↔ ((𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)) ∧ (𝐹0 ) = (0g𝑈)))
79 an21 471 . . 3 (((𝑈 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥)) ∧ (𝐹0 ) = (0g𝑈)) ↔ (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
8078, 79bitri 184 . 2 ((𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)) ↔ (∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(+g𝑈)𝑦) = (𝑦(+g𝑈)𝑥) ∧ (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈))))
8175, 80sylibr 134 1 (𝜑 → (𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  ontowfo 5256  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  s cimas 12942  Grpcgrp 13132  Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417
This theorem is referenced by:  imasrng  13512
  Copyright terms: Public domain W3C validator