Proof of Theorem lgsquad3
| Step | Hyp | Ref
| Expression |
| 1 | | simplrl 535 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) |
| 2 | 1 | nnzd 9464 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
| 3 | | nnz 9362 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 4 | 3 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) |
| 5 | | lgscl 15339 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈
ℤ) |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ) |
| 7 | 6 | zred 9465 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ) |
| 8 | | absresq 11260 |
. . . . . . 7
⊢ ((𝑁 /L 𝑀) ∈ ℝ →
((abs‘(𝑁
/L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) |
| 9 | 7, 8 | syl 14 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) |
| 10 | 2, 4 | gcdcomd 12166 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 11 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1) |
| 12 | 10, 11 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1) |
| 13 | | lgsabs1 15364 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
((abs‘(𝑁
/L 𝑀)) =
1 ↔ (𝑁 gcd 𝑀) = 1)) |
| 14 | 2, 4, 13 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1)) |
| 15 | 12, 14 | mpbird 167 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1) |
| 16 | 15 | oveq1d 5940 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2)) |
| 17 | | sq1 10742 |
. . . . . . 7
⊢
(1↑2) = 1 |
| 18 | 16, 17 | eqtrdi 2245 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1) |
| 19 | 6 | zcnd 9466 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ) |
| 20 | 19 | sqvald 10779 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) |
| 21 | 9, 18, 20 | 3eqtr3d 2237 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) |
| 22 | 21 | oveq2d 5941 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) |
| 23 | | lgscl 15339 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈
ℤ) |
| 24 | 4, 2, 23 | syl2anc 411 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ) |
| 25 | 24 | zcnd 9466 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ) |
| 26 | 25, 19, 19 | mulassd 8067 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) |
| 27 | 22, 26 | eqtr4d 2232 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀))) |
| 28 | 25 | mulridd 8060 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁)) |
| 29 | | simplll 533 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ) |
| 30 | | simpllr 534 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) |
| 31 | | simplrr 536 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) |
| 32 | 29, 30, 1, 31, 11 | lgsquad2 15408 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) /
2)))) |
| 33 | 32 | oveq1d 5940 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
| 34 | 27, 28, 33 | 3eqtr3d 2237 |
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
| 35 | | neg1cn 9112 |
. . . . . 6
⊢ -1 ∈
ℂ |
| 36 | 35 | a1i 9 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 ∈
ℂ) |
| 37 | | neg1ap0 9116 |
. . . . . 6
⊢ -1 #
0 |
| 38 | 37 | a1i 9 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 # 0) |
| 39 | 3 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) |
| 40 | | simpllr 534 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) |
| 41 | | 1zzd 9370 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 1 ∈
ℤ) |
| 42 | | 2prm 12320 |
. . . . . . . . 9
⊢ 2 ∈
ℙ |
| 43 | | nprmdvds1 12333 |
. . . . . . . . 9
⊢ (2 ∈
ℙ → ¬ 2 ∥ 1) |
| 44 | 42, 43 | mp1i 10 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥
1) |
| 45 | | omoe 12078 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ ¬ 2
∥ 𝑀) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1)) |
| 46 | 39, 40, 41, 44, 45 | syl22anc 1250 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1)) |
| 47 | | 2z 9371 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 48 | | 2ne0 9099 |
. . . . . . . 8
⊢ 2 ≠
0 |
| 49 | | peano2zm 9381 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
| 50 | 39, 49 | syl 14 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ) |
| 51 | | dvdsval2 11972 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2
∥ (𝑀 − 1)
↔ ((𝑀 − 1) / 2)
∈ ℤ)) |
| 52 | 47, 48, 50, 51 | mp3an12i 1352 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈
ℤ)) |
| 53 | 46, 52 | mpbid 147 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈
ℤ) |
| 54 | | nnz 9362 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 55 | 54 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → 𝑁 ∈
ℤ) |
| 56 | 55 | ad2antlr 489 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
| 57 | | simplrr 536 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) |
| 58 | | omoe 12078 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) |
| 59 | 56, 57, 41, 44, 58 | syl22anc 1250 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1)) |
| 60 | | peano2zm 9381 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 61 | 56, 60 | syl 14 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ) |
| 62 | | dvdsval2 11972 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2
∥ (𝑁 − 1)
↔ ((𝑁 − 1) / 2)
∈ ℤ)) |
| 63 | 47, 48, 61, 62 | mp3an12i 1352 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈
ℤ)) |
| 64 | 59, 63 | mpbid 147 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈
ℤ) |
| 65 | 53, 64 | zmulcld 9471 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈
ℤ) |
| 66 | 36, 38, 65 | expclzapd 10787 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈
ℂ) |
| 67 | 66 | mul01d 8436 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) =
0) |
| 68 | 54, 3, 5 | syl2anr 290 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 /L 𝑀) ∈
ℤ) |
| 69 | | 0zd 9355 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈
ℤ) |
| 70 | | zdceq 9418 |
. . . . . . . 8
⊢ (((𝑁 /L 𝑀) ∈ ℤ ∧ 0 ∈
ℤ) → DECID (𝑁 /L 𝑀) = 0) |
| 71 | 68, 69, 70 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
DECID (𝑁
/L 𝑀) =
0) |
| 72 | | lgsne0 15363 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1)) |
| 73 | | gcdcom 12165 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 74 | 73 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1)) |
| 75 | 72, 74 | bitrd 188 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
| 76 | 54, 3, 75 | syl2anr 290 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
| 77 | 76 | a1d 22 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(DECID (𝑁
/L 𝑀) = 0
→ ((𝑁
/L 𝑀)
≠ 0 ↔ (𝑀 gcd 𝑁) = 1))) |
| 78 | 77 | necon1bbiddc 2430 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(DECID (𝑁
/L 𝑀) = 0
→ (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))) |
| 79 | 71, 78 | mpd 13 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) |
| 80 | 79 | ad2ant2r 509 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) |
| 81 | 80 | biimpa 296 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0) |
| 82 | 81 | oveq2d 5941 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀)) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· 0)) |
| 83 | | 0zd 9355 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈
ℤ) |
| 84 | | zdceq 9418 |
. . . . . . . 8
⊢ (((𝑀 /L 𝑁) ∈ ℤ ∧ 0 ∈
ℤ) → DECID (𝑀 /L 𝑁) = 0) |
| 85 | 23, 83, 84 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝑀
/L 𝑁) =
0) |
| 86 | | lgsne0 15363 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
| 87 | 86 | a1d 22 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(DECID (𝑀
/L 𝑁) = 0
→ ((𝑀
/L 𝑁)
≠ 0 ↔ (𝑀 gcd 𝑁) = 1))) |
| 88 | 87 | necon1bbiddc 2430 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(DECID (𝑀
/L 𝑁) = 0
→ (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))) |
| 89 | 85, 88 | mpd 13 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
| 90 | 3, 54, 89 | syl2an 289 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
| 91 | 90 | ad2ant2r 509 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
| 92 | 91 | biimpa 296 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0) |
| 93 | 67, 82, 92 | 3eqtr4rd 2240 |
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
| 94 | | gcdnncl 12159 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ) |
| 95 | 94 | ad2ant2r 509 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 gcd 𝑁) ∈ ℕ) |
| 96 | 95 | nnzd 9464 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 gcd 𝑁) ∈ ℤ) |
| 97 | | 1zzd 9370 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → 1 ∈
ℤ) |
| 98 | | zdceq 9418 |
. . . 4
⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ)
→ DECID (𝑀 gcd 𝑁) = 1) |
| 99 | 96, 97, 98 | syl2anc 411 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) →
DECID (𝑀 gcd
𝑁) = 1) |
| 100 | | exmiddc 837 |
. . 3
⊢
(DECID (𝑀 gcd 𝑁) = 1 → ((𝑀 gcd 𝑁) = 1 ∨ ¬ (𝑀 gcd 𝑁) = 1)) |
| 101 | 99, 100 | syl 14 |
. 2
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → ((𝑀 gcd 𝑁) = 1 ∨ ¬ (𝑀 gcd 𝑁) = 1)) |
| 102 | 34, 93, 101 | mpjaodan 799 |
1
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· (𝑁
/L 𝑀))) |