Proof of Theorem lgsquad3
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplrl 535 | 
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | 
| 2 | 1 | nnzd 9447 | 
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) | 
| 3 |   | nnz 9345 | 
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) | 
| 4 | 3 | ad3antrrr 492 | 
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) | 
| 5 |   | lgscl 15255 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈
ℤ) | 
| 6 | 2, 4, 5 | syl2anc 411 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ) | 
| 7 | 6 | zred 9448 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ) | 
| 8 |   | absresq 11243 | 
. . . . . . 7
⊢ ((𝑁 /L 𝑀) ∈ ℝ →
((abs‘(𝑁
/L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) | 
| 9 | 7, 8 | syl 14 | 
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) | 
| 10 | 2, 4 | gcdcomd 12141 | 
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) | 
| 11 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1) | 
| 12 | 10, 11 | eqtrd 2229 | 
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1) | 
| 13 |   | lgsabs1 15280 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
((abs‘(𝑁
/L 𝑀)) =
1 ↔ (𝑁 gcd 𝑀) = 1)) | 
| 14 | 2, 4, 13 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1)) | 
| 15 | 12, 14 | mpbird 167 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1) | 
| 16 | 15 | oveq1d 5937 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2)) | 
| 17 |   | sq1 10725 | 
. . . . . . 7
⊢
(1↑2) = 1 | 
| 18 | 16, 17 | eqtrdi 2245 | 
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1) | 
| 19 | 6 | zcnd 9449 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ) | 
| 20 | 19 | sqvald 10762 | 
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) | 
| 21 | 9, 18, 20 | 3eqtr3d 2237 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) | 
| 22 | 21 | oveq2d 5938 | 
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) | 
| 23 |   | lgscl 15255 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈
ℤ) | 
| 24 | 4, 2, 23 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ) | 
| 25 | 24 | zcnd 9449 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ) | 
| 26 | 25, 19, 19 | mulassd 8050 | 
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) | 
| 27 | 22, 26 | eqtr4d 2232 | 
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀))) | 
| 28 | 25 | mulridd 8043 | 
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁)) | 
| 29 |   | simplll 533 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ) | 
| 30 |   | simpllr 534 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) | 
| 31 |   | simplrr 536 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) | 
| 32 | 29, 30, 1, 31, 11 | lgsquad2 15324 | 
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) /
2)))) | 
| 33 | 32 | oveq1d 5937 | 
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) | 
| 34 | 27, 28, 33 | 3eqtr3d 2237 | 
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) | 
| 35 |   | neg1cn 9095 | 
. . . . . 6
⊢ -1 ∈
ℂ | 
| 36 | 35 | a1i 9 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 ∈
ℂ) | 
| 37 |   | neg1ap0 9099 | 
. . . . . 6
⊢ -1 #
0 | 
| 38 | 37 | a1i 9 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 # 0) | 
| 39 | 3 | ad3antrrr 492 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) | 
| 40 |   | simpllr 534 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) | 
| 41 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 1 ∈
ℤ) | 
| 42 |   | 2prm 12295 | 
. . . . . . . . 9
⊢ 2 ∈
ℙ | 
| 43 |   | nprmdvds1 12308 | 
. . . . . . . . 9
⊢ (2 ∈
ℙ → ¬ 2 ∥ 1) | 
| 44 | 42, 43 | mp1i 10 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥
1) | 
| 45 |   | omoe 12061 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ ¬ 2
∥ 𝑀) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1)) | 
| 46 | 39, 40, 41, 44, 45 | syl22anc 1250 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1)) | 
| 47 |   | 2z 9354 | 
. . . . . . . 8
⊢ 2 ∈
ℤ | 
| 48 |   | 2ne0 9082 | 
. . . . . . . 8
⊢ 2 ≠
0 | 
| 49 |   | peano2zm 9364 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) | 
| 50 | 39, 49 | syl 14 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ) | 
| 51 |   | dvdsval2 11955 | 
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2
∥ (𝑀 − 1)
↔ ((𝑀 − 1) / 2)
∈ ℤ)) | 
| 52 | 47, 48, 50, 51 | mp3an12i 1352 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈
ℤ)) | 
| 53 | 46, 52 | mpbid 147 | 
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈
ℤ) | 
| 54 |   | nnz 9345 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 55 | 54 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → 𝑁 ∈
ℤ) | 
| 56 | 55 | ad2antlr 489 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) | 
| 57 |   | simplrr 536 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) | 
| 58 |   | omoe 12061 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) | 
| 59 | 56, 57, 41, 44, 58 | syl22anc 1250 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1)) | 
| 60 |   | peano2zm 9364 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) | 
| 61 | 56, 60 | syl 14 | 
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ) | 
| 62 |   | dvdsval2 11955 | 
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2
∥ (𝑁 − 1)
↔ ((𝑁 − 1) / 2)
∈ ℤ)) | 
| 63 | 47, 48, 61, 62 | mp3an12i 1352 | 
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈
ℤ)) | 
| 64 | 59, 63 | mpbid 147 | 
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈
ℤ) | 
| 65 | 53, 64 | zmulcld 9454 | 
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈
ℤ) | 
| 66 | 36, 38, 65 | expclzapd 10770 | 
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈
ℂ) | 
| 67 | 66 | mul01d 8419 | 
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) =
0) | 
| 68 | 54, 3, 5 | syl2anr 290 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 /L 𝑀) ∈
ℤ) | 
| 69 |   | 0zd 9338 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈
ℤ) | 
| 70 |   | zdceq 9401 | 
. . . . . . . 8
⊢ (((𝑁 /L 𝑀) ∈ ℤ ∧ 0 ∈
ℤ) → DECID (𝑁 /L 𝑀) = 0) | 
| 71 | 68, 69, 70 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
DECID (𝑁
/L 𝑀) =
0) | 
| 72 |   | lgsne0 15279 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1)) | 
| 73 |   | gcdcom 12140 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) | 
| 74 | 73 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1)) | 
| 75 | 72, 74 | bitrd 188 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) | 
| 76 | 54, 3, 75 | syl2anr 290 | 
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) | 
| 77 | 76 | a1d 22 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(DECID (𝑁
/L 𝑀) = 0
→ ((𝑁
/L 𝑀)
≠ 0 ↔ (𝑀 gcd 𝑁) = 1))) | 
| 78 | 77 | necon1bbiddc 2430 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(DECID (𝑁
/L 𝑀) = 0
→ (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))) | 
| 79 | 71, 78 | mpd 13 | 
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) | 
| 80 | 79 | ad2ant2r 509 | 
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) | 
| 81 | 80 | biimpa 296 | 
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0) | 
| 82 | 81 | oveq2d 5938 | 
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀)) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· 0)) | 
| 83 |   | 0zd 9338 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈
ℤ) | 
| 84 |   | zdceq 9401 | 
. . . . . . . 8
⊢ (((𝑀 /L 𝑁) ∈ ℤ ∧ 0 ∈
ℤ) → DECID (𝑀 /L 𝑁) = 0) | 
| 85 | 23, 83, 84 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝑀
/L 𝑁) =
0) | 
| 86 |   | lgsne0 15279 | 
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) | 
| 87 | 86 | a1d 22 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(DECID (𝑀
/L 𝑁) = 0
→ ((𝑀
/L 𝑁)
≠ 0 ↔ (𝑀 gcd 𝑁) = 1))) | 
| 88 | 87 | necon1bbiddc 2430 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(DECID (𝑀
/L 𝑁) = 0
→ (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))) | 
| 89 | 85, 88 | mpd 13 | 
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) | 
| 90 | 3, 54, 89 | syl2an 289 | 
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) | 
| 91 | 90 | ad2ant2r 509 | 
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) | 
| 92 | 91 | biimpa 296 | 
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0) | 
| 93 | 67, 82, 92 | 3eqtr4rd 2240 | 
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) | 
| 94 |   | gcdnncl 12134 | 
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ) | 
| 95 | 94 | ad2ant2r 509 | 
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 gcd 𝑁) ∈ ℕ) | 
| 96 | 95 | nnzd 9447 | 
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 gcd 𝑁) ∈ ℤ) | 
| 97 |   | 1zzd 9353 | 
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → 1 ∈
ℤ) | 
| 98 |   | zdceq 9401 | 
. . . 4
⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ)
→ DECID (𝑀 gcd 𝑁) = 1) | 
| 99 | 96, 97, 98 | syl2anc 411 | 
. . 3
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) →
DECID (𝑀 gcd
𝑁) = 1) | 
| 100 |   | exmiddc 837 | 
. . 3
⊢
(DECID (𝑀 gcd 𝑁) = 1 → ((𝑀 gcd 𝑁) = 1 ∨ ¬ (𝑀 gcd 𝑁) = 1)) | 
| 101 | 99, 100 | syl 14 | 
. 2
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → ((𝑀 gcd 𝑁) = 1 ∨ ¬ (𝑀 gcd 𝑁) = 1)) | 
| 102 | 34, 93, 101 | mpjaodan 799 | 
1
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· (𝑁
/L 𝑀))) |