ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad2lem2 GIF version

Theorem lgsquad2lem2 15726
Description: Lemma for lgsquad2 15727. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
lgsquad2lem2.f ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
lgsquad2lem2.s (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
Assertion
Ref Expression
lgsquad2lem2 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Distinct variable groups:   𝑚,𝑀   𝑥,𝑚,𝑁   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑥,𝑘,𝑚)   𝑀(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgsquad2lem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 2nn 9240 . . . . 5 2 ∈ ℕ
32a1i 9 . . . 4 (𝜑 → 2 ∈ ℕ)
4 lgsquad2.3 . . . 4 (𝜑𝑁 ∈ ℕ)
51nnzd 9536 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 2z 9442 . . . . . 6 2 ∈ ℤ
7 gcdcom 12460 . . . . . 6 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑀 gcd 2) = (2 gcd 𝑀))
85, 6, 7sylancl 413 . . . . 5 (𝜑 → (𝑀 gcd 2) = (2 gcd 𝑀))
9 lgsquad2.2 . . . . . 6 (𝜑 → ¬ 2 ∥ 𝑀)
10 2prm 12615 . . . . . . 7 2 ∈ ℙ
11 coprm 12632 . . . . . . 7 ((2 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (¬ 2 ∥ 𝑀 ↔ (2 gcd 𝑀) = 1))
1210, 5, 11sylancr 414 . . . . . 6 (𝜑 → (¬ 2 ∥ 𝑀 ↔ (2 gcd 𝑀) = 1))
139, 12mpbid 147 . . . . 5 (𝜑 → (2 gcd 𝑀) = 1)
148, 13eqtrd 2242 . . . 4 (𝜑 → (𝑀 gcd 2) = 1)
15 rpmulgcd 12513 . . . 4 (((𝑀 ∈ ℕ ∧ 2 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 2) = 1) → (𝑀 gcd (2 · 𝑁)) = (𝑀 gcd 𝑁))
161, 3, 4, 14, 15syl31anc 1255 . . 3 (𝜑 → (𝑀 gcd (2 · 𝑁)) = (𝑀 gcd 𝑁))
17 lgsquad2.5 . . 3 (𝜑 → (𝑀 gcd 𝑁) = 1)
1816, 17eqtrd 2242 . 2 (𝜑 → (𝑀 gcd (2 · 𝑁)) = 1)
19 oveq1 5981 . . . . . . . 8 (𝑚 = 1 → (𝑚 /L 𝑁) = (1 /L 𝑁))
20 oveq2 5982 . . . . . . . 8 (𝑚 = 1 → (𝑁 /L 𝑚) = (𝑁 /L 1))
2119, 20oveq12d 5992 . . . . . . 7 (𝑚 = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((1 /L 𝑁) · (𝑁 /L 1)))
22 oveq1 5981 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
23 1m1e0 9147 . . . . . . . . . . . 12 (1 − 1) = 0
2422, 23eqtrdi 2258 . . . . . . . . . . 11 (𝑚 = 1 → (𝑚 − 1) = 0)
2524oveq1d 5989 . . . . . . . . . 10 (𝑚 = 1 → ((𝑚 − 1) / 2) = (0 / 2))
26 2cn 9149 . . . . . . . . . . 11 2 ∈ ℂ
27 2ap0 9171 . . . . . . . . . . 11 2 # 0
2826, 27div0api 8861 . . . . . . . . . 10 (0 / 2) = 0
2925, 28eqtrdi 2258 . . . . . . . . 9 (𝑚 = 1 → ((𝑚 − 1) / 2) = 0)
3029oveq1d 5989 . . . . . . . 8 (𝑚 = 1 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (0 · ((𝑁 − 1) / 2)))
3130oveq2d 5990 . . . . . . 7 (𝑚 = 1 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(0 · ((𝑁 − 1) / 2))))
3221, 31eqeq12d 2224 . . . . . 6 (𝑚 = 1 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2)))))
3332imbi2d 230 . . . . 5 (𝑚 = 1 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑚 gcd (2 · 𝑁)) = 1 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2))))))
3433imbi2d 230 . . . 4 (𝑚 = 1 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2)))))))
35 oveq1 5981 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 gcd (2 · 𝑁)) = (𝑥 gcd (2 · 𝑁)))
3635eqeq1d 2218 . . . . . 6 (𝑚 = 𝑥 → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ (𝑥 gcd (2 · 𝑁)) = 1))
37 oveq1 5981 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 /L 𝑁) = (𝑥 /L 𝑁))
38 oveq2 5982 . . . . . . . 8 (𝑚 = 𝑥 → (𝑁 /L 𝑚) = (𝑁 /L 𝑥))
3937, 38oveq12d 5992 . . . . . . 7 (𝑚 = 𝑥 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)))
40 oveq1 5981 . . . . . . . . . 10 (𝑚 = 𝑥 → (𝑚 − 1) = (𝑥 − 1))
4140oveq1d 5989 . . . . . . . . 9 (𝑚 = 𝑥 → ((𝑚 − 1) / 2) = ((𝑥 − 1) / 2))
4241oveq1d 5989 . . . . . . . 8 (𝑚 = 𝑥 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))
4342oveq2d 5990 . . . . . . 7 (𝑚 = 𝑥 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))
4439, 43eqeq12d 2224 . . . . . 6 (𝑚 = 𝑥 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
4536, 44imbi12d 234 . . . . 5 (𝑚 = 𝑥 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))))
4645imbi2d 230 . . . 4 (𝑚 = 𝑥 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))))
47 oveq1 5981 . . . . . . 7 (𝑚 = 𝑦 → (𝑚 gcd (2 · 𝑁)) = (𝑦 gcd (2 · 𝑁)))
4847eqeq1d 2218 . . . . . 6 (𝑚 = 𝑦 → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ (𝑦 gcd (2 · 𝑁)) = 1))
49 oveq1 5981 . . . . . . . 8 (𝑚 = 𝑦 → (𝑚 /L 𝑁) = (𝑦 /L 𝑁))
50 oveq2 5982 . . . . . . . 8 (𝑚 = 𝑦 → (𝑁 /L 𝑚) = (𝑁 /L 𝑦))
5149, 50oveq12d 5992 . . . . . . 7 (𝑚 = 𝑦 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)))
52 oveq1 5981 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑚 − 1) = (𝑦 − 1))
5352oveq1d 5989 . . . . . . . . 9 (𝑚 = 𝑦 → ((𝑚 − 1) / 2) = ((𝑦 − 1) / 2))
5453oveq1d 5989 . . . . . . . 8 (𝑚 = 𝑦 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))
5554oveq2d 5990 . . . . . . 7 (𝑚 = 𝑦 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))
5651, 55eqeq12d 2224 . . . . . 6 (𝑚 = 𝑦 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))
5748, 56imbi12d 234 . . . . 5 (𝑚 = 𝑦 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))
5857imbi2d 230 . . . 4 (𝑚 = 𝑦 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))))
59 oveq1 5981 . . . . . . 7 (𝑚 = (𝑥 · 𝑦) → (𝑚 gcd (2 · 𝑁)) = ((𝑥 · 𝑦) gcd (2 · 𝑁)))
6059eqeq1d 2218 . . . . . 6 (𝑚 = (𝑥 · 𝑦) → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1))
61 oveq1 5981 . . . . . . . 8 (𝑚 = (𝑥 · 𝑦) → (𝑚 /L 𝑁) = ((𝑥 · 𝑦) /L 𝑁))
62 oveq2 5982 . . . . . . . 8 (𝑚 = (𝑥 · 𝑦) → (𝑁 /L 𝑚) = (𝑁 /L (𝑥 · 𝑦)))
6361, 62oveq12d 5992 . . . . . . 7 (𝑚 = (𝑥 · 𝑦) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))))
64 oveq1 5981 . . . . . . . . . 10 (𝑚 = (𝑥 · 𝑦) → (𝑚 − 1) = ((𝑥 · 𝑦) − 1))
6564oveq1d 5989 . . . . . . . . 9 (𝑚 = (𝑥 · 𝑦) → ((𝑚 − 1) / 2) = (((𝑥 · 𝑦) − 1) / 2))
6665oveq1d 5989 . . . . . . . 8 (𝑚 = (𝑥 · 𝑦) → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = ((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))
6766oveq2d 5990 . . . . . . 7 (𝑚 = (𝑥 · 𝑦) → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))
6863, 67eqeq12d 2224 . . . . . 6 (𝑚 = (𝑥 · 𝑦) → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))
6960, 68imbi12d 234 . . . . 5 (𝑚 = (𝑥 · 𝑦) → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))))
7069imbi2d 230 . . . 4 (𝑚 = (𝑥 · 𝑦) → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
71 oveq1 5981 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 gcd (2 · 𝑁)) = (𝑀 gcd (2 · 𝑁)))
7271eqeq1d 2218 . . . . . 6 (𝑚 = 𝑀 → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ (𝑀 gcd (2 · 𝑁)) = 1))
73 oveq1 5981 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 /L 𝑁) = (𝑀 /L 𝑁))
74 oveq2 5982 . . . . . . . 8 (𝑚 = 𝑀 → (𝑁 /L 𝑚) = (𝑁 /L 𝑀))
7573, 74oveq12d 5992 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)))
76 oveq1 5981 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚 − 1) = (𝑀 − 1))
7776oveq1d 5989 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑚 − 1) / 2) = ((𝑀 − 1) / 2))
7877oveq1d 5989 . . . . . . . 8 (𝑚 = 𝑀 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))
7978oveq2d 5990 . . . . . . 7 (𝑚 = 𝑀 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
8075, 79eqeq12d 2224 . . . . . 6 (𝑚 = 𝑀 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))))
8172, 80imbi12d 234 . . . . 5 (𝑚 = 𝑀 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))))
8281imbi2d 230 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))))))
83 1t1e1 9231 . . . . . . 7 (1 · 1) = 1
84 neg1cn 9183 . . . . . . . 8 -1 ∈ ℂ
85 exp0 10732 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
8684, 85ax-mp 5 . . . . . . 7 (-1↑0) = 1
8783, 86eqtr4i 2233 . . . . . 6 (1 · 1) = (-1↑0)
88 sq1 10822 . . . . . . . . 9 (1↑2) = 1
8988oveq1i 5984 . . . . . . . 8 ((1↑2) /L 𝑁) = (1 /L 𝑁)
90 1z 9440 . . . . . . . . . 10 1 ∈ ℤ
91 1ne0 9146 . . . . . . . . . 10 1 ≠ 0
9290, 91pm3.2i 272 . . . . . . . . 9 (1 ∈ ℤ ∧ 1 ≠ 0)
934nnzd 9536 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
94 1gcd 12479 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1 gcd 𝑁) = 1)
9593, 94syl 14 . . . . . . . . 9 (𝜑 → (1 gcd 𝑁) = 1)
96 lgssq 15684 . . . . . . . . 9 (((1 ∈ ℤ ∧ 1 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (1 gcd 𝑁) = 1) → ((1↑2) /L 𝑁) = 1)
9792, 93, 95, 96mp3an2i 1357 . . . . . . . 8 (𝜑 → ((1↑2) /L 𝑁) = 1)
9889, 97eqtr3id 2256 . . . . . . 7 (𝜑 → (1 /L 𝑁) = 1)
9988oveq2i 5985 . . . . . . . 8 (𝑁 /L (1↑2)) = (𝑁 /L 1)
100 1nn 9089 . . . . . . . . . 10 1 ∈ ℕ
101100a1i 9 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
102 gcd1 12474 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
10393, 102syl 14 . . . . . . . . 9 (𝜑 → (𝑁 gcd 1) = 1)
104 lgssq2 15685 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ∈ ℕ ∧ (𝑁 gcd 1) = 1) → (𝑁 /L (1↑2)) = 1)
10593, 101, 103, 104syl3anc 1252 . . . . . . . 8 (𝜑 → (𝑁 /L (1↑2)) = 1)
10699, 105eqtr3id 2256 . . . . . . 7 (𝜑 → (𝑁 /L 1) = 1)
10798, 106oveq12d 5992 . . . . . 6 (𝜑 → ((1 /L 𝑁) · (𝑁 /L 1)) = (1 · 1))
108 nnm1nn0 9378 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1094, 108syl 14 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
110109nn0cnd 9392 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
111110halfcld 9324 . . . . . . . 8 (𝜑 → ((𝑁 − 1) / 2) ∈ ℂ)
112111mul02d 8506 . . . . . . 7 (𝜑 → (0 · ((𝑁 − 1) / 2)) = 0)
113112oveq2d 5990 . . . . . 6 (𝜑 → (-1↑(0 · ((𝑁 − 1) / 2))) = (-1↑0))
11487, 107, 1133eqtr4a 2268 . . . . 5 (𝜑 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2))))
115114a1d 22 . . . 4 (𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2)))))
116 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ ℙ)
117 prmz 12599 . . . . . . . . . . . 12 (𝑚 ∈ ℙ → 𝑚 ∈ ℤ)
118117ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ ℤ)
1196a1i 9 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 2 ∈ ℤ)
1204adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑁 ∈ ℕ)
121120nnzd 9536 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑁 ∈ ℤ)
122 zmulcl 9468 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
1236, 121, 122sylancr 414 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (2 · 𝑁) ∈ ℤ)
124 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd (2 · 𝑁)) = 1)
125 dvdsmul1 12290 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁))
1266, 121, 125sylancr 414 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 2 ∥ (2 · 𝑁))
127 rpdvds 12587 . . . . . . . . . . 11 (((𝑚 ∈ ℤ ∧ 2 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) ∧ ((𝑚 gcd (2 · 𝑁)) = 1 ∧ 2 ∥ (2 · 𝑁))) → (𝑚 gcd 2) = 1)
128118, 119, 123, 124, 126, 127syl32anc 1260 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd 2) = 1)
129 prmrp 12633 . . . . . . . . . . 11 ((𝑚 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑚 gcd 2) = 1 ↔ 𝑚 ≠ 2))
130116, 10, 129sylancl 413 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → ((𝑚 gcd 2) = 1 ↔ 𝑚 ≠ 2))
131128, 130mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ≠ 2)
132 eldifsn 3774 . . . . . . . . 9 (𝑚 ∈ (ℙ ∖ {2}) ↔ (𝑚 ∈ ℙ ∧ 𝑚 ≠ 2))
133116, 131, 132sylanbrc 417 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
134 prmnn 12598 . . . . . . . . . . 11 (𝑚 ∈ ℙ → 𝑚 ∈ ℕ)
135134ad2antrl 490 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ ℕ)
1362a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 2 ∈ ℕ)
137 rpmulgcd 12513 . . . . . . . . . 10 (((𝑚 ∈ ℕ ∧ 2 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑚 gcd 2) = 1) → (𝑚 gcd (2 · 𝑁)) = (𝑚 gcd 𝑁))
138135, 136, 120, 128, 137syl31anc 1255 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd (2 · 𝑁)) = (𝑚 gcd 𝑁))
139138, 124eqtr3d 2244 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd 𝑁) = 1)
140133, 139jca 306 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1))
141 lgsquad2lem2.f . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
142140, 141syldan 282 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
143142exp32 365 . . . . 5 (𝜑 → (𝑚 ∈ ℙ → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))))
144143com12 30 . . . 4 (𝑚 ∈ ℙ → (𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))))
145 jcab 605 . . . . 5 ((𝜑 → (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))) ↔ ((𝜑 → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ∧ (𝜑 → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))))
146 simplrl 535 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑥 ∈ (ℤ‘2))
147 eluz2nn 9729 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℕ)
148146, 147syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑥 ∈ ℕ)
149 simplrr 536 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑦 ∈ (ℤ‘2))
150 eluz2nn 9729 . . . . . . . . . . . 12 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℕ)
151149, 150syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑦 ∈ ℕ)
152148, 151nnmulcld 9127 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑥 · 𝑦) ∈ ℕ)
153 n2dvds1 12389 . . . . . . . . . . . 12 ¬ 2 ∥ 1
15493ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑁 ∈ ℤ)
1556, 154, 125sylancr 414 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 2 ∥ (2 · 𝑁))
156 eluzelz 9699 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℤ)
157 eluzelz 9699 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
158156, 157anim12i 338 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ))
159158ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ))
160 zmulcl 9468 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
161159, 160syl 14 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 · 𝑦) ∈ ℤ)
1626, 154, 122sylancr 414 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 · 𝑁) ∈ ℤ)
163 dvdsgcd 12499 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 ∥ (𝑥 · 𝑦) ∧ 2 ∥ (2 · 𝑁)) → 2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁))))
1646, 161, 162, 163mp3an2i 1357 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 ∥ (𝑥 · 𝑦) ∧ 2 ∥ (2 · 𝑁)) → 2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁))))
165155, 164mpan2d 428 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 ∥ (𝑥 · 𝑦) → 2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁))))
166 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1)
167166breq2d 4074 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁)) ↔ 2 ∥ 1))
168165, 167sylibd 149 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 ∥ (𝑥 · 𝑦) → 2 ∥ 1))
169153, 168mtoi 668 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ¬ 2 ∥ (𝑥 · 𝑦))
170169adantrr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ¬ 2 ∥ (𝑥 · 𝑦))
1714ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑁 ∈ ℕ)
172 lgsquad2.4 . . . . . . . . . . 11 (𝜑 → ¬ 2 ∥ 𝑁)
173172ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ¬ 2 ∥ 𝑁)
174 dvdsmul2 12291 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (2 · 𝑁))
1756, 154, 174sylancr 414 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑁 ∥ (2 · 𝑁))
176 rpdvds 12587 . . . . . . . . . . . 12 ((((𝑥 · 𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ 𝑁 ∥ (2 · 𝑁))) → ((𝑥 · 𝑦) gcd 𝑁) = 1)
177161, 154, 162, 166, 175, 176syl32anc 1260 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((𝑥 · 𝑦) gcd 𝑁) = 1)
178177adantrr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑥 · 𝑦) gcd 𝑁) = 1)
179 eqidd 2210 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑥 · 𝑦) = (𝑥 · 𝑦))
180159simpld 112 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑥 ∈ ℤ)
181180, 162gcdcomd 12461 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 gcd (2 · 𝑁)) = ((2 · 𝑁) gcd 𝑥))
182162, 161gcdcomd 12461 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd (𝑥 · 𝑦)) = ((𝑥 · 𝑦) gcd (2 · 𝑁)))
183182, 166eqtrd 2242 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd (𝑥 · 𝑦)) = 1)
184 dvdsmul1 12290 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
185159, 184syl 14 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑥 ∥ (𝑥 · 𝑦))
186 rpdvds 12587 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ) ∧ (((2 · 𝑁) gcd (𝑥 · 𝑦)) = 1 ∧ 𝑥 ∥ (𝑥 · 𝑦))) → ((2 · 𝑁) gcd 𝑥) = 1)
187162, 180, 161, 183, 185, 186syl32anc 1260 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd 𝑥) = 1)
188181, 187eqtrd 2242 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 gcd (2 · 𝑁)) = 1)
189188adantrr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑥 gcd (2 · 𝑁)) = 1)
190 simprrl 539 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
191189, 190mpd 13 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))
192159simprd 114 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑦 ∈ ℤ)
193192, 162gcdcomd 12461 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑦 gcd (2 · 𝑁)) = ((2 · 𝑁) gcd 𝑦))
194 dvdsmul2 12291 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∥ (𝑥 · 𝑦))
195159, 194syl 14 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑦 ∥ (𝑥 · 𝑦))
196 rpdvds 12587 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ) ∧ (((2 · 𝑁) gcd (𝑥 · 𝑦)) = 1 ∧ 𝑦 ∥ (𝑥 · 𝑦))) → ((2 · 𝑁) gcd 𝑦) = 1)
197162, 192, 161, 183, 195, 196syl32anc 1260 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd 𝑦) = 1)
198193, 197eqtrd 2242 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑦 gcd (2 · 𝑁)) = 1)
199198adantrr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑦 gcd (2 · 𝑁)) = 1)
200 simprrr 540 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))
201199, 200mpd 13 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))
202152, 170, 171, 173, 178, 148, 151, 179, 191, 201lgsquad2lem1 15725 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))
203202exp32 365 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → ((((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))) → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))))
204203com23 78 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) → ((((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))) → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))))
205204expcom 116 . . . . . 6 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (𝜑 → ((((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))) → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
206205a2d 26 . . . . 5 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → ((𝜑 → (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))) → (𝜑 → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
207145, 206biimtrrid 153 . . . 4 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (((𝜑 → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ∧ (𝜑 → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))) → (𝜑 → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
20834, 46, 58, 70, 82, 115, 144, 207prmind 12609 . . 3 (𝑀 ∈ ℕ → (𝜑 → ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))))
2091, 208mpcom 36 . 2 (𝜑 → ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))))
21018, 209mpd 13 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wne 2380  wral 2488  cdif 3174  {csn 3646   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   · cmul 7972  cmin 8285  -cneg 8286   / cdiv 8787  cn 9078  2c2 9129  0cn0 9337  cz 9414  cuz 9690  ...cfz 10172  cexp 10727  cdvds 12264   gcd cgcd 12440  cprime 12595   /L clgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-lgs 15642
This theorem is referenced by:  lgsquad2  15727
  Copyright terms: Public domain W3C validator