ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen GIF version

Theorem lgseisen 15231
Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3165 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 12252 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 14 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 15175 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 411 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
81gausslemma2dlem0a 15206 . . . . . . 7 (𝜑𝑄 ∈ ℕ)
9 oddprm 12400 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
105, 9syl 14 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnnn0d 9296 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
128, 11nnexpcld 10769 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
13 nnq 9701 . . . . . 6 ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
1412, 13syl 14 . . . . 5 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
15 1zzd 9347 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
1615znegcld 9444 . . . . . . 7 (𝜑 → -1 ∈ ℤ)
17 zq 9694 . . . . . . 7 (-1 ∈ ℤ → -1 ∈ ℚ)
1816, 17syl 14 . . . . . 6 (𝜑 → -1 ∈ ℚ)
19 neg1ne0 9091 . . . . . . 7 -1 ≠ 0
2019a1i 9 . . . . . 6 (𝜑 → -1 ≠ 0)
2110nnzd 9441 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
2215, 21fzfigd 10505 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
235gausslemma2dlem0a 15206 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
24 znq 9692 . . . . . . . . . 10 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
254, 23, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 / 𝑃) ∈ ℚ)
26 2z 9348 . . . . . . . . . . . 12 2 ∈ ℤ
2726a1i 9 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℤ)
28 elfznn 10123 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2928adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
3029nnzd 9441 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ)
3127, 30zmulcld 9448 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
32 zq 9694 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℤ → (2 · 𝑥) ∈ ℚ)
3331, 32syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℚ)
34 qmulcl 9705 . . . . . . . . 9 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3525, 33, 34syl2an2r 595 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3635flqcld 10349 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3722, 36fsumzcl 11548 . . . . . 6 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
38 qexpclz 10634 . . . . . 6 ((-1 ∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
3918, 20, 37, 38syl3anc 1249 . . . . 5 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
40 1z 9346 . . . . . 6 1 ∈ ℤ
41 zq 9694 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℚ)
4240, 41mp1i 10 . . . . 5 (𝜑 → 1 ∈ ℚ)
43 nnq 9701 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
4423, 43syl 14 . . . . 5 (𝜑𝑃 ∈ ℚ)
4523nngt0d 9028 . . . . 5 (𝜑 → 0 < 𝑃)
46 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
47 eqid 2193 . . . . . 6 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
48 eqid 2193 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
49 eqid 2193 . . . . . 6 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
50 eqid 2193 . . . . . 6 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
51 eqid 2193 . . . . . 6 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
52 eqid 2193 . . . . . 6 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15230 . . . . 5 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
5414, 39, 42, 44, 45, 53modqadd1 10435 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
55 qaddcl 9703 . . . . . 6 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ ∧ 1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
5639, 42, 55syl2anc 411 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
57 df-neg 8195 . . . . . . 7 -1 = (0 − 1)
58 neg1cn 9089 . . . . . . . . . . . 12 -1 ∈ ℂ
59 neg1ap0 9093 . . . . . . . . . . . 12 -1 # 0
60 absexpzap 11227 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
6158, 59, 37, 60mp3an12i 1352 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
62 ax-1cn 7967 . . . . . . . . . . . . . . 15 1 ∈ ℂ
6362absnegi 11294 . . . . . . . . . . . . . 14 (abs‘-1) = (abs‘1)
64 abs1 11219 . . . . . . . . . . . . . 14 (abs‘1) = 1
6563, 64eqtri 2214 . . . . . . . . . . . . 13 (abs‘-1) = 1
6665oveq1i 5929 . . . . . . . . . . . 12 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
67 1exp 10642 . . . . . . . . . . . . 13 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6837, 67syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6966, 68eqtrid 2238 . . . . . . . . . . 11 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
7061, 69eqtrd 2226 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
71 1le1 8593 . . . . . . . . . 10 1 ≤ 1
7270, 71eqbrtrdi 4069 . . . . . . . . 9 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
73 neg1rr 9090 . . . . . . . . . . . 12 -1 ∈ ℝ
7473a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℝ)
7559a1i 9 . . . . . . . . . . 11 (𝜑 → -1 # 0)
7674, 75, 37reexpclzapd 10772 . . . . . . . . . 10 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
77 1re 8020 . . . . . . . . . 10 1 ∈ ℝ
78 absle 11236 . . . . . . . . . 10 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
7976, 77, 78sylancl 413 . . . . . . . . 9 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
8072, 79mpbid 147 . . . . . . . 8 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
8180simpld 112 . . . . . . 7 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8257, 81eqbrtrrid 4066 . . . . . 6 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
83 0red 8022 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
84 1red 8036 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
8583, 84, 76lesubaddd 8563 . . . . . 6 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
8682, 85mpbid 147 . . . . 5 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
8723nnred 8997 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
88 peano2rem 8288 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
8987, 88syl 14 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
9080simprd 114 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
91 df-2 9043 . . . . . . . . 9 2 = (1 + 1)
92 eldifsni 3748 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
935, 92syl 14 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
9423nnzd 9441 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
95 zapne 9394 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9694, 26, 95sylancl 413 . . . . . . . . . . 11 (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9793, 96mpbird 167 . . . . . . . . . 10 (𝜑𝑃 # 2)
98 2re 9054 . . . . . . . . . . . 12 2 ∈ ℝ
9998a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
1005eldifad 3165 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
101 prmuz2 12272 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
102 eluzle 9607 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
103100, 101, 1023syl 17 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑃)
10499, 87, 103leltapd 8660 . . . . . . . . . 10 (𝜑 → (2 < 𝑃𝑃 # 2))
10597, 104mpbird 167 . . . . . . . . 9 (𝜑 → 2 < 𝑃)
10691, 105eqbrtrrid 4066 . . . . . . . 8 (𝜑 → (1 + 1) < 𝑃)
10784, 84, 87ltaddsubd 8566 . . . . . . . 8 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
108106, 107mpbid 147 . . . . . . 7 (𝜑 → 1 < (𝑃 − 1))
10976, 84, 89, 90, 108lelttrd 8146 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
11076, 84, 87ltaddsubd 8566 . . . . . 6 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
111109, 110mpbird 167 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
112 modqid 10423 . . . . 5 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11356, 44, 86, 111, 112syl22anc 1250 . . . 4 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11454, 113eqtrd 2226 . . 3 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
115114oveq1d 5934 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
11676recnd 8050 . . 3 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
117 pncan 8227 . . 3 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
118116, 62, 117sylancl 413 . 2 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
1197, 115, 1183eqtrd 2230 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364  cdif 3151  {csn 3619   class class class wbr 4030  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192  -cneg 8193   # cap 8602   / cdiv 8693  cn 8984  2c2 9035  cz 9320  cuz 9595  cq 9687  ...cfz 10077  cfl 10340   mod cmo 10396  cexp 10612  abscabs 11144  Σcsu 11499  cprime 12248  mulGrpcmgp 13419  ℤRHomczrh 14110  ℤ/nczn 14112   /L clgs 15154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-tpos 6300  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-ec 6591  df-qs 6595  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352  df-pc 12426  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-sca 12714  df-vsca 12715  df-ip 12716  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-igsum 12873  df-topgen 12874  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-submnd 13035  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mulg 13193  df-subg 13243  df-nsg 13244  df-eqg 13245  df-ghm 13314  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-dvr 13631  df-rhm 13651  df-nzr 13679  df-subrg 13718  df-domn 13758  df-idom 13759  df-lmod 13788  df-lssm 13852  df-lsp 13886  df-sra 13934  df-rgmod 13935  df-lidl 13968  df-rsp 13969  df-2idl 13999  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-zring 14090  df-zrh 14113  df-zn 14115  df-lgs 15155
This theorem is referenced by:  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator