ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen GIF version

Theorem lgseisen 15595
Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3178 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 12477 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 14 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 15539 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 411 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
81gausslemma2dlem0a 15570 . . . . . . 7 (𝜑𝑄 ∈ ℕ)
9 oddprm 12626 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
105, 9syl 14 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnnn0d 9355 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
128, 11nnexpcld 10847 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
13 nnq 9761 . . . . . 6 ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
1412, 13syl 14 . . . . 5 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
15 1zzd 9406 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
1615znegcld 9504 . . . . . . 7 (𝜑 → -1 ∈ ℤ)
17 zq 9754 . . . . . . 7 (-1 ∈ ℤ → -1 ∈ ℚ)
1816, 17syl 14 . . . . . 6 (𝜑 → -1 ∈ ℚ)
19 neg1ne0 9150 . . . . . . 7 -1 ≠ 0
2019a1i 9 . . . . . 6 (𝜑 → -1 ≠ 0)
2110nnzd 9501 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
2215, 21fzfigd 10583 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
235gausslemma2dlem0a 15570 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
24 znq 9752 . . . . . . . . . 10 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
254, 23, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 / 𝑃) ∈ ℚ)
26 2z 9407 . . . . . . . . . . . 12 2 ∈ ℤ
2726a1i 9 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℤ)
28 elfznn 10183 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2928adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
3029nnzd 9501 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ)
3127, 30zmulcld 9508 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
32 zq 9754 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℤ → (2 · 𝑥) ∈ ℚ)
3331, 32syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℚ)
34 qmulcl 9765 . . . . . . . . 9 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3525, 33, 34syl2an2r 595 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3635flqcld 10427 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3722, 36fsumzcl 11757 . . . . . 6 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
38 qexpclz 10712 . . . . . 6 ((-1 ∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
3918, 20, 37, 38syl3anc 1250 . . . . 5 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
40 1z 9405 . . . . . 6 1 ∈ ℤ
41 zq 9754 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℚ)
4240, 41mp1i 10 . . . . 5 (𝜑 → 1 ∈ ℚ)
43 nnq 9761 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
4423, 43syl 14 . . . . 5 (𝜑𝑃 ∈ ℚ)
4523nngt0d 9087 . . . . 5 (𝜑 → 0 < 𝑃)
46 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
47 eqid 2206 . . . . . 6 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
48 eqid 2206 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
49 eqid 2206 . . . . . 6 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
50 eqid 2206 . . . . . 6 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
51 eqid 2206 . . . . . 6 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
52 eqid 2206 . . . . . 6 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15594 . . . . 5 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
5414, 39, 42, 44, 45, 53modqadd1 10513 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
55 qaddcl 9763 . . . . . 6 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ ∧ 1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
5639, 42, 55syl2anc 411 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
57 df-neg 8253 . . . . . . 7 -1 = (0 − 1)
58 neg1cn 9148 . . . . . . . . . . . 12 -1 ∈ ℂ
59 neg1ap0 9152 . . . . . . . . . . . 12 -1 # 0
60 absexpzap 11435 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
6158, 59, 37, 60mp3an12i 1354 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
62 ax-1cn 8025 . . . . . . . . . . . . . . 15 1 ∈ ℂ
6362absnegi 11502 . . . . . . . . . . . . . 14 (abs‘-1) = (abs‘1)
64 abs1 11427 . . . . . . . . . . . . . 14 (abs‘1) = 1
6563, 64eqtri 2227 . . . . . . . . . . . . 13 (abs‘-1) = 1
6665oveq1i 5961 . . . . . . . . . . . 12 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
67 1exp 10720 . . . . . . . . . . . . 13 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6837, 67syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6966, 68eqtrid 2251 . . . . . . . . . . 11 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
7061, 69eqtrd 2239 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
71 1le1 8652 . . . . . . . . . 10 1 ≤ 1
7270, 71eqbrtrdi 4086 . . . . . . . . 9 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
73 neg1rr 9149 . . . . . . . . . . . 12 -1 ∈ ℝ
7473a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℝ)
7559a1i 9 . . . . . . . . . . 11 (𝜑 → -1 # 0)
7674, 75, 37reexpclzapd 10850 . . . . . . . . . 10 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
77 1re 8078 . . . . . . . . . 10 1 ∈ ℝ
78 absle 11444 . . . . . . . . . 10 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
7976, 77, 78sylancl 413 . . . . . . . . 9 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
8072, 79mpbid 147 . . . . . . . 8 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
8180simpld 112 . . . . . . 7 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8257, 81eqbrtrrid 4083 . . . . . 6 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
83 0red 8080 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
84 1red 8094 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
8583, 84, 76lesubaddd 8622 . . . . . 6 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
8682, 85mpbid 147 . . . . 5 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
8723nnred 9056 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
88 peano2rem 8346 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
8987, 88syl 14 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
9080simprd 114 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
91 df-2 9102 . . . . . . . . 9 2 = (1 + 1)
92 eldifsni 3764 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
935, 92syl 14 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
9423nnzd 9501 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
95 zapne 9454 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9694, 26, 95sylancl 413 . . . . . . . . . . 11 (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9793, 96mpbird 167 . . . . . . . . . 10 (𝜑𝑃 # 2)
98 2re 9113 . . . . . . . . . . . 12 2 ∈ ℝ
9998a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
1005eldifad 3178 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
101 prmuz2 12497 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
102 eluzle 9667 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
103100, 101, 1023syl 17 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑃)
10499, 87, 103leltapd 8719 . . . . . . . . . 10 (𝜑 → (2 < 𝑃𝑃 # 2))
10597, 104mpbird 167 . . . . . . . . 9 (𝜑 → 2 < 𝑃)
10691, 105eqbrtrrid 4083 . . . . . . . 8 (𝜑 → (1 + 1) < 𝑃)
10784, 84, 87ltaddsubd 8625 . . . . . . . 8 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
108106, 107mpbid 147 . . . . . . 7 (𝜑 → 1 < (𝑃 − 1))
10976, 84, 89, 90, 108lelttrd 8204 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
11076, 84, 87ltaddsubd 8625 . . . . . 6 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
111109, 110mpbird 167 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
112 modqid 10501 . . . . 5 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11356, 44, 86, 111, 112syl22anc 1251 . . . 4 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11454, 113eqtrd 2239 . . 3 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
115114oveq1d 5966 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
11676recnd 8108 . . 3 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
117 pncan 8285 . . 3 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
118116, 62, 117sylancl 413 . 2 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
1197, 115, 1183eqtrd 2243 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  cdif 3164  {csn 3634   class class class wbr 4047  cmpt 4109  cfv 5276  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cle 8115  cmin 8250  -cneg 8251   # cap 8661   / cdiv 8752  cn 9043  2c2 9094  cz 9379  cuz 9655  cq 9747  ...cfz 10137  cfl 10418   mod cmo 10474  cexp 10690  abscabs 11352  Σcsu 11708  cprime 12473  mulGrpcmgp 13726  ℤRHomczrh 14417  ℤ/nczn 14419   /L clgs 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-tpos 6338  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-ec 6629  df-qs 6633  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-prm 12474  df-phi 12577  df-pc 12652  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-starv 12968  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-0g 13134  df-igsum 13135  df-topgen 13136  df-iimas 13178  df-qus 13179  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-submnd 13336  df-grp 13379  df-minusg 13380  df-sbg 13381  df-mulg 13500  df-subg 13550  df-nsg 13551  df-eqg 13552  df-ghm 13621  df-cmn 13666  df-abl 13667  df-mgp 13727  df-rng 13739  df-ur 13766  df-srg 13770  df-ring 13804  df-cring 13805  df-oppr 13874  df-dvdsr 13895  df-unit 13896  df-invr 13927  df-dvr 13938  df-rhm 13958  df-nzr 13986  df-subrg 14025  df-domn 14065  df-idom 14066  df-lmod 14095  df-lssm 14159  df-lsp 14193  df-sra 14241  df-rgmod 14242  df-lidl 14275  df-rsp 14276  df-2idl 14306  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363  df-zring 14397  df-zrh 14420  df-zn 14422  df-lgs 15519
This theorem is referenced by:  lgsquadlem2  15599
  Copyright terms: Public domain W3C validator