ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen GIF version

Theorem lgseisen 15761
Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3208 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 12641 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 14 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 15705 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 411 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
81gausslemma2dlem0a 15736 . . . . . . 7 (𝜑𝑄 ∈ ℕ)
9 oddprm 12790 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
105, 9syl 14 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnnn0d 9430 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
128, 11nnexpcld 10925 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
13 nnq 9836 . . . . . 6 ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
1412, 13syl 14 . . . . 5 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
15 1zzd 9481 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
1615znegcld 9579 . . . . . . 7 (𝜑 → -1 ∈ ℤ)
17 zq 9829 . . . . . . 7 (-1 ∈ ℤ → -1 ∈ ℚ)
1816, 17syl 14 . . . . . 6 (𝜑 → -1 ∈ ℚ)
19 neg1ne0 9225 . . . . . . 7 -1 ≠ 0
2019a1i 9 . . . . . 6 (𝜑 → -1 ≠ 0)
2110nnzd 9576 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
2215, 21fzfigd 10661 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
235gausslemma2dlem0a 15736 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
24 znq 9827 . . . . . . . . . 10 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
254, 23, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 / 𝑃) ∈ ℚ)
26 2z 9482 . . . . . . . . . . . 12 2 ∈ ℤ
2726a1i 9 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℤ)
28 elfznn 10258 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2928adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
3029nnzd 9576 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ)
3127, 30zmulcld 9583 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
32 zq 9829 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℤ → (2 · 𝑥) ∈ ℚ)
3331, 32syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℚ)
34 qmulcl 9840 . . . . . . . . 9 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3525, 33, 34syl2an2r 597 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3635flqcld 10505 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3722, 36fsumzcl 11921 . . . . . 6 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
38 qexpclz 10790 . . . . . 6 ((-1 ∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
3918, 20, 37, 38syl3anc 1271 . . . . 5 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
40 1z 9480 . . . . . 6 1 ∈ ℤ
41 zq 9829 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℚ)
4240, 41mp1i 10 . . . . 5 (𝜑 → 1 ∈ ℚ)
43 nnq 9836 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
4423, 43syl 14 . . . . 5 (𝜑𝑃 ∈ ℚ)
4523nngt0d 9162 . . . . 5 (𝜑 → 0 < 𝑃)
46 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
47 eqid 2229 . . . . . 6 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
48 eqid 2229 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
49 eqid 2229 . . . . . 6 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
50 eqid 2229 . . . . . 6 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
51 eqid 2229 . . . . . 6 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
52 eqid 2229 . . . . . 6 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15760 . . . . 5 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
5414, 39, 42, 44, 45, 53modqadd1 10591 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
55 qaddcl 9838 . . . . . 6 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ ∧ 1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
5639, 42, 55syl2anc 411 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
57 df-neg 8328 . . . . . . 7 -1 = (0 − 1)
58 neg1cn 9223 . . . . . . . . . . . 12 -1 ∈ ℂ
59 neg1ap0 9227 . . . . . . . . . . . 12 -1 # 0
60 absexpzap 11599 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
6158, 59, 37, 60mp3an12i 1375 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
62 ax-1cn 8100 . . . . . . . . . . . . . . 15 1 ∈ ℂ
6362absnegi 11666 . . . . . . . . . . . . . 14 (abs‘-1) = (abs‘1)
64 abs1 11591 . . . . . . . . . . . . . 14 (abs‘1) = 1
6563, 64eqtri 2250 . . . . . . . . . . . . 13 (abs‘-1) = 1
6665oveq1i 6017 . . . . . . . . . . . 12 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
67 1exp 10798 . . . . . . . . . . . . 13 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6837, 67syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6966, 68eqtrid 2274 . . . . . . . . . . 11 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
7061, 69eqtrd 2262 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
71 1le1 8727 . . . . . . . . . 10 1 ≤ 1
7270, 71eqbrtrdi 4122 . . . . . . . . 9 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
73 neg1rr 9224 . . . . . . . . . . . 12 -1 ∈ ℝ
7473a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℝ)
7559a1i 9 . . . . . . . . . . 11 (𝜑 → -1 # 0)
7674, 75, 37reexpclzapd 10928 . . . . . . . . . 10 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
77 1re 8153 . . . . . . . . . 10 1 ∈ ℝ
78 absle 11608 . . . . . . . . . 10 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
7976, 77, 78sylancl 413 . . . . . . . . 9 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
8072, 79mpbid 147 . . . . . . . 8 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
8180simpld 112 . . . . . . 7 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8257, 81eqbrtrrid 4119 . . . . . 6 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
83 0red 8155 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
84 1red 8169 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
8583, 84, 76lesubaddd 8697 . . . . . 6 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
8682, 85mpbid 147 . . . . 5 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
8723nnred 9131 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
88 peano2rem 8421 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
8987, 88syl 14 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
9080simprd 114 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
91 df-2 9177 . . . . . . . . 9 2 = (1 + 1)
92 eldifsni 3797 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
935, 92syl 14 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
9423nnzd 9576 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
95 zapne 9529 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9694, 26, 95sylancl 413 . . . . . . . . . . 11 (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9793, 96mpbird 167 . . . . . . . . . 10 (𝜑𝑃 # 2)
98 2re 9188 . . . . . . . . . . . 12 2 ∈ ℝ
9998a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
1005eldifad 3208 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
101 prmuz2 12661 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
102 eluzle 9742 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
103100, 101, 1023syl 17 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑃)
10499, 87, 103leltapd 8794 . . . . . . . . . 10 (𝜑 → (2 < 𝑃𝑃 # 2))
10597, 104mpbird 167 . . . . . . . . 9 (𝜑 → 2 < 𝑃)
10691, 105eqbrtrrid 4119 . . . . . . . 8 (𝜑 → (1 + 1) < 𝑃)
10784, 84, 87ltaddsubd 8700 . . . . . . . 8 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
108106, 107mpbid 147 . . . . . . 7 (𝜑 → 1 < (𝑃 − 1))
10976, 84, 89, 90, 108lelttrd 8279 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
11076, 84, 87ltaddsubd 8700 . . . . . 6 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
111109, 110mpbird 167 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
112 modqid 10579 . . . . 5 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11356, 44, 86, 111, 112syl22anc 1272 . . . 4 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11454, 113eqtrd 2262 . . 3 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
115114oveq1d 6022 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
11676recnd 8183 . . 3 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
117 pncan 8360 . . 3 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
118116, 62, 117sylancl 413 . 2 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
1197, 115, 1183eqtrd 2266 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  cdif 3194  {csn 3666   class class class wbr 4083  cmpt 4145  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cle 8190  cmin 8325  -cneg 8326   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  cz 9454  cuz 9730  cq 9822  ...cfz 10212  cfl 10496   mod cmo 10552  cexp 10768  abscabs 11516  Σcsu 11872  cprime 12637  mulGrpcmgp 13891  ℤRHomczrh 14583  ℤ/nczn 14585   /L clgs 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-tpos 6397  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-ec 6690  df-qs 6694  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741  df-pc 12816  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-igsum 13300  df-topgen 13301  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-submnd 13501  df-grp 13544  df-minusg 13545  df-sbg 13546  df-mulg 13665  df-subg 13715  df-nsg 13716  df-eqg 13717  df-ghm 13786  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-invr 14093  df-dvr 14104  df-rhm 14124  df-nzr 14152  df-subrg 14191  df-domn 14231  df-idom 14232  df-lmod 14261  df-lssm 14325  df-lsp 14359  df-sra 14407  df-rgmod 14408  df-lidl 14441  df-rsp 14442  df-2idl 14472  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-zring 14563  df-zrh 14586  df-zn 14588  df-lgs 15685
This theorem is referenced by:  lgsquadlem2  15765
  Copyright terms: Public domain W3C validator