ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen GIF version

Theorem lgseisen 15423
Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3168 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 12306 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 14 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 15367 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 411 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
81gausslemma2dlem0a 15398 . . . . . . 7 (𝜑𝑄 ∈ ℕ)
9 oddprm 12455 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
105, 9syl 14 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnnn0d 9321 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
128, 11nnexpcld 10806 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
13 nnq 9726 . . . . . 6 ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
1412, 13syl 14 . . . . 5 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
15 1zzd 9372 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
1615znegcld 9469 . . . . . . 7 (𝜑 → -1 ∈ ℤ)
17 zq 9719 . . . . . . 7 (-1 ∈ ℤ → -1 ∈ ℚ)
1816, 17syl 14 . . . . . 6 (𝜑 → -1 ∈ ℚ)
19 neg1ne0 9116 . . . . . . 7 -1 ≠ 0
2019a1i 9 . . . . . 6 (𝜑 → -1 ≠ 0)
2110nnzd 9466 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
2215, 21fzfigd 10542 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
235gausslemma2dlem0a 15398 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
24 znq 9717 . . . . . . . . . 10 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
254, 23, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 / 𝑃) ∈ ℚ)
26 2z 9373 . . . . . . . . . . . 12 2 ∈ ℤ
2726a1i 9 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℤ)
28 elfznn 10148 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2928adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
3029nnzd 9466 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ)
3127, 30zmulcld 9473 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
32 zq 9719 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℤ → (2 · 𝑥) ∈ ℚ)
3331, 32syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℚ)
34 qmulcl 9730 . . . . . . . . 9 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3525, 33, 34syl2an2r 595 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3635flqcld 10386 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3722, 36fsumzcl 11586 . . . . . 6 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
38 qexpclz 10671 . . . . . 6 ((-1 ∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
3918, 20, 37, 38syl3anc 1249 . . . . 5 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
40 1z 9371 . . . . . 6 1 ∈ ℤ
41 zq 9719 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℚ)
4240, 41mp1i 10 . . . . 5 (𝜑 → 1 ∈ ℚ)
43 nnq 9726 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
4423, 43syl 14 . . . . 5 (𝜑𝑃 ∈ ℚ)
4523nngt0d 9053 . . . . 5 (𝜑 → 0 < 𝑃)
46 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
47 eqid 2196 . . . . . 6 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
48 eqid 2196 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
49 eqid 2196 . . . . . 6 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
50 eqid 2196 . . . . . 6 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
51 eqid 2196 . . . . . 6 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
52 eqid 2196 . . . . . 6 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15422 . . . . 5 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
5414, 39, 42, 44, 45, 53modqadd1 10472 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
55 qaddcl 9728 . . . . . 6 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ ∧ 1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
5639, 42, 55syl2anc 411 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
57 df-neg 8219 . . . . . . 7 -1 = (0 − 1)
58 neg1cn 9114 . . . . . . . . . . . 12 -1 ∈ ℂ
59 neg1ap0 9118 . . . . . . . . . . . 12 -1 # 0
60 absexpzap 11264 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
6158, 59, 37, 60mp3an12i 1352 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
62 ax-1cn 7991 . . . . . . . . . . . . . . 15 1 ∈ ℂ
6362absnegi 11331 . . . . . . . . . . . . . 14 (abs‘-1) = (abs‘1)
64 abs1 11256 . . . . . . . . . . . . . 14 (abs‘1) = 1
6563, 64eqtri 2217 . . . . . . . . . . . . 13 (abs‘-1) = 1
6665oveq1i 5935 . . . . . . . . . . . 12 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
67 1exp 10679 . . . . . . . . . . . . 13 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6837, 67syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6966, 68eqtrid 2241 . . . . . . . . . . 11 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
7061, 69eqtrd 2229 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
71 1le1 8618 . . . . . . . . . 10 1 ≤ 1
7270, 71eqbrtrdi 4073 . . . . . . . . 9 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
73 neg1rr 9115 . . . . . . . . . . . 12 -1 ∈ ℝ
7473a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℝ)
7559a1i 9 . . . . . . . . . . 11 (𝜑 → -1 # 0)
7674, 75, 37reexpclzapd 10809 . . . . . . . . . 10 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
77 1re 8044 . . . . . . . . . 10 1 ∈ ℝ
78 absle 11273 . . . . . . . . . 10 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
7976, 77, 78sylancl 413 . . . . . . . . 9 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
8072, 79mpbid 147 . . . . . . . 8 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
8180simpld 112 . . . . . . 7 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8257, 81eqbrtrrid 4070 . . . . . 6 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
83 0red 8046 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
84 1red 8060 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
8583, 84, 76lesubaddd 8588 . . . . . 6 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
8682, 85mpbid 147 . . . . 5 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
8723nnred 9022 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
88 peano2rem 8312 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
8987, 88syl 14 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
9080simprd 114 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
91 df-2 9068 . . . . . . . . 9 2 = (1 + 1)
92 eldifsni 3752 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
935, 92syl 14 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
9423nnzd 9466 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
95 zapne 9419 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9694, 26, 95sylancl 413 . . . . . . . . . . 11 (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9793, 96mpbird 167 . . . . . . . . . 10 (𝜑𝑃 # 2)
98 2re 9079 . . . . . . . . . . . 12 2 ∈ ℝ
9998a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
1005eldifad 3168 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
101 prmuz2 12326 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
102 eluzle 9632 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
103100, 101, 1023syl 17 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑃)
10499, 87, 103leltapd 8685 . . . . . . . . . 10 (𝜑 → (2 < 𝑃𝑃 # 2))
10597, 104mpbird 167 . . . . . . . . 9 (𝜑 → 2 < 𝑃)
10691, 105eqbrtrrid 4070 . . . . . . . 8 (𝜑 → (1 + 1) < 𝑃)
10784, 84, 87ltaddsubd 8591 . . . . . . . 8 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
108106, 107mpbid 147 . . . . . . 7 (𝜑 → 1 < (𝑃 − 1))
10976, 84, 89, 90, 108lelttrd 8170 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
11076, 84, 87ltaddsubd 8591 . . . . . 6 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
111109, 110mpbird 167 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
112 modqid 10460 . . . . 5 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11356, 44, 86, 111, 112syl22anc 1250 . . . 4 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11454, 113eqtrd 2229 . . 3 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
115114oveq1d 5940 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
11676recnd 8074 . . 3 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
117 pncan 8251 . . 3 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
118116, 62, 117sylancl 413 . 2 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
1197, 115, 1183eqtrd 2233 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  cdif 3154  {csn 3623   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cle 8081  cmin 8216  -cneg 8217   # cap 8627   / cdiv 8718  cn 9009  2c2 9060  cz 9345  cuz 9620  cq 9712  ...cfz 10102  cfl 10377   mod cmo 10433  cexp 10649  abscabs 11181  Σcsu 11537  cprime 12302  mulGrpcmgp 13554  ℤRHomczrh 14245  ℤ/nczn 14247   /L clgs 15346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-proddc 11735  df-dvds 11972  df-gcd 12148  df-prm 12303  df-phi 12406  df-pc 12481  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-igsum 12963  df-topgen 12964  df-iimas 13006  df-qus 13007  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mhm 13163  df-submnd 13164  df-grp 13207  df-minusg 13208  df-sbg 13209  df-mulg 13328  df-subg 13378  df-nsg 13379  df-eqg 13380  df-ghm 13449  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-ur 13594  df-srg 13598  df-ring 13632  df-cring 13633  df-oppr 13702  df-dvdsr 13723  df-unit 13724  df-invr 13755  df-dvr 13766  df-rhm 13786  df-nzr 13814  df-subrg 13853  df-domn 13893  df-idom 13894  df-lmod 13923  df-lssm 13987  df-lsp 14021  df-sra 14069  df-rgmod 14070  df-lidl 14103  df-rsp 14104  df-2idl 14134  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225  df-zrh 14248  df-zn 14250  df-lgs 15347
This theorem is referenced by:  lgsquadlem2  15427
  Copyright terms: Public domain W3C validator