ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen GIF version

Theorem lgseisen 15718
Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3188 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 12599 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 14 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 15662 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 411 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
81gausslemma2dlem0a 15693 . . . . . . 7 (𝜑𝑄 ∈ ℕ)
9 oddprm 12748 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
105, 9syl 14 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnnn0d 9390 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
128, 11nnexpcld 10884 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
13 nnq 9796 . . . . . 6 ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
1412, 13syl 14 . . . . 5 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℚ)
15 1zzd 9441 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
1615znegcld 9539 . . . . . . 7 (𝜑 → -1 ∈ ℤ)
17 zq 9789 . . . . . . 7 (-1 ∈ ℤ → -1 ∈ ℚ)
1816, 17syl 14 . . . . . 6 (𝜑 → -1 ∈ ℚ)
19 neg1ne0 9185 . . . . . . 7 -1 ≠ 0
2019a1i 9 . . . . . 6 (𝜑 → -1 ≠ 0)
2110nnzd 9536 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
2215, 21fzfigd 10620 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
235gausslemma2dlem0a 15693 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
24 znq 9787 . . . . . . . . . 10 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
254, 23, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 / 𝑃) ∈ ℚ)
26 2z 9442 . . . . . . . . . . . 12 2 ∈ ℤ
2726a1i 9 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℤ)
28 elfznn 10218 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2928adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
3029nnzd 9536 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ)
3127, 30zmulcld 9543 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
32 zq 9789 . . . . . . . . . 10 ((2 · 𝑥) ∈ ℤ → (2 · 𝑥) ∈ ℚ)
3331, 32syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℚ)
34 qmulcl 9800 . . . . . . . . 9 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3525, 33, 34syl2an2r 597 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ)
3635flqcld 10464 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3722, 36fsumzcl 11879 . . . . . 6 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
38 qexpclz 10749 . . . . . 6 ((-1 ∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
3918, 20, 37, 38syl3anc 1252 . . . . 5 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ)
40 1z 9440 . . . . . 6 1 ∈ ℤ
41 zq 9789 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℚ)
4240, 41mp1i 10 . . . . 5 (𝜑 → 1 ∈ ℚ)
43 nnq 9796 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
4423, 43syl 14 . . . . 5 (𝜑𝑃 ∈ ℚ)
4523nngt0d 9122 . . . . 5 (𝜑 → 0 < 𝑃)
46 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
47 eqid 2209 . . . . . 6 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
48 eqid 2209 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
49 eqid 2209 . . . . . 6 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
50 eqid 2209 . . . . . 6 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
51 eqid 2209 . . . . . 6 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
52 eqid 2209 . . . . . 6 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15717 . . . . 5 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
5414, 39, 42, 44, 45, 53modqadd1 10550 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
55 qaddcl 9798 . . . . . 6 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ ∧ 1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
5639, 42, 55syl2anc 411 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ)
57 df-neg 8288 . . . . . . 7 -1 = (0 − 1)
58 neg1cn 9183 . . . . . . . . . . . 12 -1 ∈ ℂ
59 neg1ap0 9187 . . . . . . . . . . . 12 -1 # 0
60 absexpzap 11557 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
6158, 59, 37, 60mp3an12i 1356 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
62 ax-1cn 8060 . . . . . . . . . . . . . . 15 1 ∈ ℂ
6362absnegi 11624 . . . . . . . . . . . . . 14 (abs‘-1) = (abs‘1)
64 abs1 11549 . . . . . . . . . . . . . 14 (abs‘1) = 1
6563, 64eqtri 2230 . . . . . . . . . . . . 13 (abs‘-1) = 1
6665oveq1i 5984 . . . . . . . . . . . 12 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
67 1exp 10757 . . . . . . . . . . . . 13 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6837, 67syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6966, 68eqtrid 2254 . . . . . . . . . . 11 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
7061, 69eqtrd 2242 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
71 1le1 8687 . . . . . . . . . 10 1 ≤ 1
7270, 71eqbrtrdi 4101 . . . . . . . . 9 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
73 neg1rr 9184 . . . . . . . . . . . 12 -1 ∈ ℝ
7473a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℝ)
7559a1i 9 . . . . . . . . . . 11 (𝜑 → -1 # 0)
7674, 75, 37reexpclzapd 10887 . . . . . . . . . 10 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
77 1re 8113 . . . . . . . . . 10 1 ∈ ℝ
78 absle 11566 . . . . . . . . . 10 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
7976, 77, 78sylancl 413 . . . . . . . . 9 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
8072, 79mpbid 147 . . . . . . . 8 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
8180simpld 112 . . . . . . 7 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8257, 81eqbrtrrid 4098 . . . . . 6 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
83 0red 8115 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
84 1red 8129 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
8583, 84, 76lesubaddd 8657 . . . . . 6 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
8682, 85mpbid 147 . . . . 5 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
8723nnred 9091 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
88 peano2rem 8381 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
8987, 88syl 14 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
9080simprd 114 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
91 df-2 9137 . . . . . . . . 9 2 = (1 + 1)
92 eldifsni 3776 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
935, 92syl 14 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
9423nnzd 9536 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
95 zapne 9489 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9694, 26, 95sylancl 413 . . . . . . . . . . 11 (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2))
9793, 96mpbird 167 . . . . . . . . . 10 (𝜑𝑃 # 2)
98 2re 9148 . . . . . . . . . . . 12 2 ∈ ℝ
9998a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
1005eldifad 3188 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
101 prmuz2 12619 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
102 eluzle 9702 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
103100, 101, 1023syl 17 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑃)
10499, 87, 103leltapd 8754 . . . . . . . . . 10 (𝜑 → (2 < 𝑃𝑃 # 2))
10597, 104mpbird 167 . . . . . . . . 9 (𝜑 → 2 < 𝑃)
10691, 105eqbrtrrid 4098 . . . . . . . 8 (𝜑 → (1 + 1) < 𝑃)
10784, 84, 87ltaddsubd 8660 . . . . . . . 8 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
108106, 107mpbid 147 . . . . . . 7 (𝜑 → 1 < (𝑃 − 1))
10976, 84, 89, 90, 108lelttrd 8239 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
11076, 84, 87ltaddsubd 8660 . . . . . 6 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
111109, 110mpbird 167 . . . . 5 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
112 modqid 10538 . . . . 5 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11356, 44, 86, 111, 112syl22anc 1253 . . . 4 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
11454, 113eqtrd 2242 . . 3 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
115114oveq1d 5989 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
11676recnd 8143 . . 3 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
117 pncan 8320 . . 3 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
118116, 62, 117sylancl 413 . 2 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
1197, 115, 1183eqtrd 2246 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wne 2380  cdif 3174  {csn 3646   class class class wbr 4062  cmpt 4124  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150  cmin 8285  -cneg 8286   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  cz 9414  cuz 9690  cq 9782  ...cfz 10172  cfl 10455   mod cmo 10511  cexp 10727  abscabs 11474  Σcsu 11830  cprime 12595  mulGrpcmgp 13849  ℤRHomczrh 14540  ℤ/nczn 14542   /L clgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-tpos 6361  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-ec 6652  df-qs 6656  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-igsum 13258  df-topgen 13259  df-iimas 13301  df-qus 13302  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-submnd 13459  df-grp 13502  df-minusg 13503  df-sbg 13504  df-mulg 13623  df-subg 13673  df-nsg 13674  df-eqg 13675  df-ghm 13744  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-unit 14019  df-invr 14050  df-dvr 14061  df-rhm 14081  df-nzr 14109  df-subrg 14148  df-domn 14188  df-idom 14189  df-lmod 14218  df-lssm 14282  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-rsp 14399  df-2idl 14429  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520  df-zrh 14543  df-zn 14545  df-lgs 15642
This theorem is referenced by:  lgsquadlem2  15722
  Copyright terms: Public domain W3C validator