| Step | Hyp | Ref
 | Expression | 
| 1 |   | lgseisen.2 | 
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) | 
| 2 | 1 | eldifad 3168 | 
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℙ) | 
| 3 |   | prmz 12279 | 
. . . 4
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) | 
| 4 | 2, 3 | syl 14 | 
. . 3
⊢ (𝜑 → 𝑄 ∈ ℤ) | 
| 5 |   | lgseisen.1 | 
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) | 
| 6 |   | lgsval3 15259 | 
. . 3
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑄
/L 𝑃) =
((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) | 
| 7 | 4, 5, 6 | syl2anc 411 | 
. 2
⊢ (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) | 
| 8 | 1 | gausslemma2dlem0a 15290 | 
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ ℕ) | 
| 9 |   | oddprm 12428 | 
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) | 
| 10 | 5, 9 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) | 
| 11 | 10 | nnnn0d 9302 | 
. . . . . . 7
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) | 
| 12 | 8, 11 | nnexpcld 10787 | 
. . . . . 6
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℕ) | 
| 13 |   | nnq 9707 | 
. . . . . 6
⊢ ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ →
(𝑄↑((𝑃 − 1) / 2)) ∈
ℚ) | 
| 14 | 12, 13 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℚ) | 
| 15 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) | 
| 16 | 15 | znegcld 9450 | 
. . . . . . 7
⊢ (𝜑 → -1 ∈
ℤ) | 
| 17 |   | zq 9700 | 
. . . . . . 7
⊢ (-1
∈ ℤ → -1 ∈ ℚ) | 
| 18 | 16, 17 | syl 14 | 
. . . . . 6
⊢ (𝜑 → -1 ∈
ℚ) | 
| 19 |   | neg1ne0 9097 | 
. . . . . . 7
⊢ -1 ≠
0 | 
| 20 | 19 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → -1 ≠
0) | 
| 21 | 10 | nnzd 9447 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℤ) | 
| 22 | 15, 21 | fzfigd 10523 | 
. . . . . . 7
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) | 
| 23 | 5 | gausslemma2dlem0a 15290 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) | 
| 24 |   | znq 9698 | 
. . . . . . . . . 10
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ) | 
| 25 | 4, 23, 24 | syl2anc 411 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑄 / 𝑃) ∈ ℚ) | 
| 26 |   | 2z 9354 | 
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ | 
| 27 | 26 | a1i 9 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℤ) | 
| 28 |   | elfznn 10129 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) | 
| 29 | 28 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ) | 
| 30 | 29 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ) | 
| 31 | 27, 30 | zmulcld 9454 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℤ) | 
| 32 |   | zq 9700 | 
. . . . . . . . . 10
⊢ ((2
· 𝑥) ∈ ℤ
→ (2 · 𝑥)
∈ ℚ) | 
| 33 | 31, 32 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℚ) | 
| 34 |   | qmulcl 9711 | 
. . . . . . . . 9
⊢ (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) | 
| 35 | 25, 33, 34 | syl2an2r 595 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) | 
| 36 | 35 | flqcld 10367 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℤ) | 
| 37 | 22, 36 | fsumzcl 11567 | 
. . . . . 6
⊢ (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) | 
| 38 |   | qexpclz 10652 | 
. . . . . 6
⊢ ((-1
∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) →
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈
ℚ) | 
| 39 | 18, 20, 37, 38 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ) | 
| 40 |   | 1z 9352 | 
. . . . . 6
⊢ 1 ∈
ℤ | 
| 41 |   | zq 9700 | 
. . . . . 6
⊢ (1 ∈
ℤ → 1 ∈ ℚ) | 
| 42 | 40, 41 | mp1i 10 | 
. . . . 5
⊢ (𝜑 → 1 ∈
ℚ) | 
| 43 |   | nnq 9707 | 
. . . . . 6
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℚ) | 
| 44 | 23, 43 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℚ) | 
| 45 | 23 | nngt0d 9034 | 
. . . . 5
⊢ (𝜑 → 0 < 𝑃) | 
| 46 |   | lgseisen.3 | 
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 𝑄) | 
| 47 |   | eqid 2196 | 
. . . . . 6
⊢ ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃) | 
| 48 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
((((-1↑((𝑄 · (2
· 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
((((-1↑((𝑄 · (2
· 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) | 
| 49 |   | eqid 2196 | 
. . . . . 6
⊢ ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃) | 
| 50 |   | eqid 2196 | 
. . . . . 6
⊢
(ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃) | 
| 51 |   | eqid 2196 | 
. . . . . 6
⊢
(mulGrp‘(ℤ/nℤ‘𝑃)) =
(mulGrp‘(ℤ/nℤ‘𝑃)) | 
| 52 |   | eqid 2196 | 
. . . . . 6
⊢
(ℤRHom‘(ℤ/nℤ‘𝑃)) =
(ℤRHom‘(ℤ/nℤ‘𝑃)) | 
| 53 | 5, 1, 46, 47, 48, 49, 50, 51, 52 | lgseisenlem4 15314 | 
. . . . 5
⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) | 
| 54 | 14, 39, 42, 44, 45, 53 | modqadd1 10453 | 
. . . 4
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃)) | 
| 55 |   | qaddcl 9709 | 
. . . . . 6
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℚ ∧
1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ) | 
| 56 | 39, 42, 55 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ) | 
| 57 |   | df-neg 8200 | 
. . . . . . 7
⊢ -1 = (0
− 1) | 
| 58 |   | neg1cn 9095 | 
. . . . . . . . . . . 12
⊢ -1 ∈
ℂ | 
| 59 |   | neg1ap0 9099 | 
. . . . . . . . . . . 12
⊢ -1 #
0 | 
| 60 |   | absexpzap 11245 | 
. . . . . . . . . . . 12
⊢ ((-1
∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | 
| 61 | 58, 59, 37, 60 | mp3an12i 1352 | 
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | 
| 62 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ | 
| 63 | 62 | absnegi 11312 | 
. . . . . . . . . . . . . 14
⊢
(abs‘-1) = (abs‘1) | 
| 64 |   | abs1 11237 | 
. . . . . . . . . . . . . 14
⊢
(abs‘1) = 1 | 
| 65 | 63, 64 | eqtri 2217 | 
. . . . . . . . . . . . 13
⊢
(abs‘-1) = 1 | 
| 66 | 65 | oveq1i 5932 | 
. . . . . . . . . . . 12
⊢
((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) | 
| 67 |   | 1exp 10660 | 
. . . . . . . . . . . . 13
⊢
(Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))) ∈ ℤ →
(1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) = 1) | 
| 68 | 37, 67 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1) | 
| 69 | 66, 68 | eqtrid 2241 | 
. . . . . . . . . . 11
⊢ (𝜑 →
((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1) | 
| 70 | 61, 69 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1) | 
| 71 |   | 1le1 8599 | 
. . . . . . . . . 10
⊢ 1 ≤
1 | 
| 72 | 70, 71 | eqbrtrdi 4072 | 
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1) | 
| 73 |   | neg1rr 9096 | 
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ | 
| 74 | 73 | a1i 9 | 
. . . . . . . . . . 11
⊢ (𝜑 → -1 ∈
ℝ) | 
| 75 | 59 | a1i 9 | 
. . . . . . . . . . 11
⊢ (𝜑 → -1 # 0) | 
| 76 | 74, 75, 37 | reexpclzapd 10790 | 
. . . . . . . . . 10
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ) | 
| 77 |   | 1re 8025 | 
. . . . . . . . . 10
⊢ 1 ∈
ℝ | 
| 78 |   | absle 11254 | 
. . . . . . . . . 10
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℝ ∧
1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1))) | 
| 79 | 76, 77, 78 | sylancl 413 | 
. . . . . . . . 9
⊢ (𝜑 →
((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1))) | 
| 80 | 72, 79 | mpbid 147 | 
. . . . . . . 8
⊢ (𝜑 → (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1)) | 
| 81 | 80 | simpld 112 | 
. . . . . . 7
⊢ (𝜑 → -1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))) | 
| 82 | 57, 81 | eqbrtrrid 4069 | 
. . . . . 6
⊢ (𝜑 → (0 − 1) ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))) | 
| 83 |   | 0red 8027 | 
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) | 
| 84 |   | 1red 8041 | 
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) | 
| 85 | 83, 84, 76 | lesubaddd 8569 | 
. . . . . 6
⊢ (𝜑 → ((0 − 1) ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ↔ 0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) +
1))) | 
| 86 | 82, 85 | mpbid 147 | 
. . . . 5
⊢ (𝜑 → 0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) +
1)) | 
| 87 | 23 | nnred 9003 | 
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℝ) | 
| 88 |   | peano2rem 8293 | 
. . . . . . . 8
⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈
ℝ) | 
| 89 | 87, 88 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) | 
| 90 | 80 | simprd 114 | 
. . . . . . 7
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1) | 
| 91 |   | df-2 9049 | 
. . . . . . . . 9
⊢ 2 = (1 +
1) | 
| 92 |   | eldifsni 3751 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) | 
| 93 | 5, 92 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ≠ 2) | 
| 94 | 23 | nnzd 9447 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) | 
| 95 |   | zapne 9400 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℤ ∧ 2 ∈
ℤ) → (𝑃 # 2
↔ 𝑃 ≠
2)) | 
| 96 | 94, 26, 95 | sylancl 413 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2)) | 
| 97 | 93, 96 | mpbird 167 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 # 2) | 
| 98 |   | 2re 9060 | 
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ | 
| 99 | 98 | a1i 9 | 
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) | 
| 100 | 5 | eldifad 3168 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 101 |   | prmuz2 12299 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 102 |   | eluzle 9613 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈
(ℤ≥‘2) → 2 ≤ 𝑃) | 
| 103 | 100, 101,
102 | 3syl 17 | 
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 𝑃) | 
| 104 | 99, 87, 103 | leltapd 8666 | 
. . . . . . . . . 10
⊢ (𝜑 → (2 < 𝑃 ↔ 𝑃 # 2)) | 
| 105 | 97, 104 | mpbird 167 | 
. . . . . . . . 9
⊢ (𝜑 → 2 < 𝑃) | 
| 106 | 91, 105 | eqbrtrrid 4069 | 
. . . . . . . 8
⊢ (𝜑 → (1 + 1) < 𝑃) | 
| 107 | 84, 84, 87 | ltaddsubd 8572 | 
. . . . . . . 8
⊢ (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1))) | 
| 108 | 106, 107 | mpbid 147 | 
. . . . . . 7
⊢ (𝜑 → 1 < (𝑃 − 1)) | 
| 109 | 76, 84, 89, 90, 108 | lelttrd 8151 | 
. . . . . 6
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)) | 
| 110 | 76, 84, 87 | ltaddsubd 8572 | 
. . . . . 6
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))) | 
| 111 | 109, 110 | mpbird 167 | 
. . . . 5
⊢ (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃) | 
| 112 |   | modqid 10441 | 
. . . . 5
⊢
(((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) ∧
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) < 𝑃)) →
(((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) | 
| 113 | 56, 44, 86, 111, 112 | syl22anc 1250 | 
. . . 4
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) | 
| 114 | 54, 113 | eqtrd 2229 | 
. . 3
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) | 
| 115 | 114 | oveq1d 5937 | 
. 2
⊢ (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1)) | 
| 116 | 76 | recnd 8055 | 
. . 3
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ) | 
| 117 |   | pncan 8232 | 
. . 3
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℂ ∧
1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | 
| 118 | 116, 62, 117 | sylancl 413 | 
. 2
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | 
| 119 | 7, 115, 118 | 3eqtrd 2233 | 
1
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |