Step | Hyp | Ref
| Expression |
1 | | lgseisen.2 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
2 | 1 | eldifad 3164 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℙ) |
3 | | prmz 12249 |
. . . 4
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
4 | 2, 3 | syl 14 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℤ) |
5 | | lgseisen.1 |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
6 | | lgsval3 15134 |
. . 3
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑄
/L 𝑃) =
((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) |
7 | 4, 5, 6 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) |
8 | 1 | gausslemma2dlem0a 15165 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ ℕ) |
9 | | oddprm 12397 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) |
10 | 5, 9 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) |
11 | 10 | nnnn0d 9293 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) |
12 | 8, 11 | nnexpcld 10766 |
. . . . . 6
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℕ) |
13 | | nnq 9698 |
. . . . . 6
⊢ ((𝑄↑((𝑃 − 1) / 2)) ∈ ℕ →
(𝑄↑((𝑃 − 1) / 2)) ∈
ℚ) |
14 | 12, 13 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℚ) |
15 | | 1zzd 9344 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
16 | 15 | znegcld 9441 |
. . . . . . 7
⊢ (𝜑 → -1 ∈
ℤ) |
17 | | zq 9691 |
. . . . . . 7
⊢ (-1
∈ ℤ → -1 ∈ ℚ) |
18 | 16, 17 | syl 14 |
. . . . . 6
⊢ (𝜑 → -1 ∈
ℚ) |
19 | | neg1ne0 9089 |
. . . . . . 7
⊢ -1 ≠
0 |
20 | 19 | a1i 9 |
. . . . . 6
⊢ (𝜑 → -1 ≠
0) |
21 | 10 | nnzd 9438 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℤ) |
22 | 15, 21 | fzfigd 10502 |
. . . . . . 7
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) |
23 | 5 | gausslemma2dlem0a 15165 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) |
24 | | znq 9689 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ) |
25 | 4, 23, 24 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 / 𝑃) ∈ ℚ) |
26 | | 2z 9345 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
27 | 26 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℤ) |
28 | | elfznn 10120 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) |
29 | 28 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ) |
30 | 29 | nnzd 9438 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ) |
31 | 27, 30 | zmulcld 9445 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℤ) |
32 | | zq 9691 |
. . . . . . . . . 10
⊢ ((2
· 𝑥) ∈ ℤ
→ (2 · 𝑥)
∈ ℚ) |
33 | 31, 32 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℚ) |
34 | | qmulcl 9702 |
. . . . . . . . 9
⊢ (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) |
35 | 25, 33, 34 | syl2an2r 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) |
36 | 35 | flqcld 10346 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℤ) |
37 | 22, 36 | fsumzcl 11545 |
. . . . . 6
⊢ (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) |
38 | | qexpclz 10631 |
. . . . . 6
⊢ ((-1
∈ ℚ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) →
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈
ℚ) |
39 | 18, 20, 37, 38 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℚ) |
40 | | 1z 9343 |
. . . . . 6
⊢ 1 ∈
ℤ |
41 | | zq 9691 |
. . . . . 6
⊢ (1 ∈
ℤ → 1 ∈ ℚ) |
42 | 40, 41 | mp1i 10 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℚ) |
43 | | nnq 9698 |
. . . . . 6
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℚ) |
44 | 23, 43 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℚ) |
45 | 23 | nngt0d 9026 |
. . . . 5
⊢ (𝜑 → 0 < 𝑃) |
46 | | lgseisen.3 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
47 | | eqid 2193 |
. . . . . 6
⊢ ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃) |
48 | | eqid 2193 |
. . . . . 6
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
((((-1↑((𝑄 · (2
· 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
((((-1↑((𝑄 · (2
· 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) |
49 | | eqid 2193 |
. . . . . 6
⊢ ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃) |
50 | | eqid 2193 |
. . . . . 6
⊢
(ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃) |
51 | | eqid 2193 |
. . . . . 6
⊢
(mulGrp‘(ℤ/nℤ‘𝑃)) =
(mulGrp‘(ℤ/nℤ‘𝑃)) |
52 | | eqid 2193 |
. . . . . 6
⊢
(ℤRHom‘(ℤ/nℤ‘𝑃)) =
(ℤRHom‘(ℤ/nℤ‘𝑃)) |
53 | 5, 1, 46, 47, 48, 49, 50, 51, 52 | lgseisenlem4 15189 |
. . . . 5
⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) |
54 | 14, 39, 42, 44, 45, 53 | modqadd1 10432 |
. . . 4
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃)) |
55 | | qaddcl 9700 |
. . . . . 6
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℚ ∧
1 ∈ ℚ) → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ) |
56 | 39, 42, 55 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ) |
57 | | df-neg 8193 |
. . . . . . 7
⊢ -1 = (0
− 1) |
58 | | neg1cn 9087 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℂ |
59 | | neg1ap0 9091 |
. . . . . . . . . . . 12
⊢ -1 #
0 |
60 | | absexpzap 11224 |
. . . . . . . . . . . 12
⊢ ((-1
∈ ℂ ∧ -1 # 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
61 | 58, 59, 37, 60 | mp3an12i 1352 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
62 | | ax-1cn 7965 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
63 | 62 | absnegi 11291 |
. . . . . . . . . . . . . 14
⊢
(abs‘-1) = (abs‘1) |
64 | | abs1 11216 |
. . . . . . . . . . . . . 14
⊢
(abs‘1) = 1 |
65 | 63, 64 | eqtri 2214 |
. . . . . . . . . . . . 13
⊢
(abs‘-1) = 1 |
66 | 65 | oveq1i 5928 |
. . . . . . . . . . . 12
⊢
((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
67 | | 1exp 10639 |
. . . . . . . . . . . . 13
⊢
(Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))) ∈ ℤ →
(1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) = 1) |
68 | 37, 67 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1) |
69 | 66, 68 | eqtrid 2238 |
. . . . . . . . . . 11
⊢ (𝜑 →
((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1) |
70 | 61, 69 | eqtrd 2226 |
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1) |
71 | | 1le1 8591 |
. . . . . . . . . 10
⊢ 1 ≤
1 |
72 | 70, 71 | eqbrtrdi 4068 |
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1) |
73 | | neg1rr 9088 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
74 | 73 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝜑 → -1 ∈
ℝ) |
75 | 59 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝜑 → -1 # 0) |
76 | 74, 75, 37 | reexpclzapd 10769 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ) |
77 | | 1re 8018 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
78 | | absle 11233 |
. . . . . . . . . 10
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℝ ∧
1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1))) |
79 | 76, 77, 78 | sylancl 413 |
. . . . . . . . 9
⊢ (𝜑 →
((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1))) |
80 | 72, 79 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → (-1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ≤
1)) |
81 | 80 | simpld 112 |
. . . . . . 7
⊢ (𝜑 → -1 ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))) |
82 | 57, 81 | eqbrtrrid 4065 |
. . . . . 6
⊢ (𝜑 → (0 − 1) ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))) |
83 | | 0red 8020 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
84 | | 1red 8034 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
85 | 83, 84, 76 | lesubaddd 8561 |
. . . . . 6
⊢ (𝜑 → ((0 − 1) ≤
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ↔ 0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) +
1))) |
86 | 82, 85 | mpbid 147 |
. . . . 5
⊢ (𝜑 → 0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) +
1)) |
87 | 23 | nnred 8995 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℝ) |
88 | | peano2rem 8286 |
. . . . . . . 8
⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈
ℝ) |
89 | 87, 88 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
90 | 80 | simprd 114 |
. . . . . . 7
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1) |
91 | | df-2 9041 |
. . . . . . . . 9
⊢ 2 = (1 +
1) |
92 | | eldifsni 3747 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
93 | 5, 92 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ≠ 2) |
94 | 23 | nnzd 9438 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) |
95 | | zapne 9391 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℤ ∧ 2 ∈
ℤ) → (𝑃 # 2
↔ 𝑃 ≠
2)) |
96 | 94, 26, 95 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 # 2 ↔ 𝑃 ≠ 2)) |
97 | 93, 96 | mpbird 167 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 # 2) |
98 | | 2re 9052 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
99 | 98 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℝ) |
100 | 5 | eldifad 3164 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℙ) |
101 | | prmuz2 12269 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
102 | | eluzle 9604 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈
(ℤ≥‘2) → 2 ≤ 𝑃) |
103 | 100, 101,
102 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 𝑃) |
104 | 99, 87, 103 | leltapd 8658 |
. . . . . . . . . 10
⊢ (𝜑 → (2 < 𝑃 ↔ 𝑃 # 2)) |
105 | 97, 104 | mpbird 167 |
. . . . . . . . 9
⊢ (𝜑 → 2 < 𝑃) |
106 | 91, 105 | eqbrtrrid 4065 |
. . . . . . . 8
⊢ (𝜑 → (1 + 1) < 𝑃) |
107 | 84, 84, 87 | ltaddsubd 8564 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1))) |
108 | 106, 107 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → 1 < (𝑃 − 1)) |
109 | 76, 84, 89, 90, 108 | lelttrd 8144 |
. . . . . 6
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)) |
110 | 76, 84, 87 | ltaddsubd 8564 |
. . . . . 6
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))) |
111 | 109, 110 | mpbird 167 |
. . . . 5
⊢ (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃) |
112 | | modqid 10420 |
. . . . 5
⊢
(((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) ∧
((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) < 𝑃)) →
(((-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) |
113 | 56, 44, 86, 111, 112 | syl22anc 1250 |
. . . 4
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) |
114 | 54, 113 | eqtrd 2226 |
. . 3
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)) |
115 | 114 | oveq1d 5933 |
. 2
⊢ (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1)) |
116 | 76 | recnd 8048 |
. . 3
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ) |
117 | | pncan 8225 |
. . 3
⊢
(((-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℂ ∧
1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
118 | 116, 62, 117 | sylancl 413 |
. 2
⊢ (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
119 | 7, 115, 118 | 3eqtrd 2230 |
1
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |