MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz2 Structured version   Visualization version   GIF version

Theorem ramz2 16896
Description: The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)

Proof of Theorem ramz2
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 simpl1 1191 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ)
32nnnn0d 12473 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ0)
4 simpl2 1192 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑅𝑉)
5 simpl3 1193 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝐹:𝑅⟶ℕ0)
6 0nn0 12428 . . . 4 0 ∈ ℕ0
76a1i 11 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 0 ∈ ℕ0)
8 simplrl 775 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝐶𝑅)
9 0elpw 5311 . . . . 5 ∅ ∈ 𝒫 𝑠
109a1i 11 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∅ ∈ 𝒫 𝑠)
11 simplrr 776 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) = 0)
12 0le0 12254 . . . . 5 0 ≤ 0
1311, 12eqbrtrdi 5144 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) ≤ 0)
14 simpll1 1212 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑀 ∈ ℕ)
1510hashbc 16879 . . . . . 6 (𝑀 ∈ ℕ → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
1614, 15syl 17 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
17 0ss 4356 . . . . 5 ∅ ⊆ (𝑓 “ {𝐶})
1816, 17eqsstrdi 3998 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))
19 fveq2 6842 . . . . . . 7 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
2019breq1d 5115 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) ≤ (♯‘𝑥) ↔ (𝐹𝐶) ≤ (♯‘𝑥)))
21 sneq 4596 . . . . . . . 8 (𝑐 = 𝐶 → {𝑐} = {𝐶})
2221imaeq2d 6013 . . . . . . 7 (𝑐 = 𝐶 → (𝑓 “ {𝑐}) = (𝑓 “ {𝐶}))
2322sseq2d 3976 . . . . . 6 (𝑐 = 𝐶 → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
2420, 23anbi12d 631 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
25 fveq2 6842 . . . . . . . 8 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
26 hash0 14267 . . . . . . . 8 (♯‘∅) = 0
2725, 26eqtrdi 2792 . . . . . . 7 (𝑥 = ∅ → (♯‘𝑥) = 0)
2827breq2d 5117 . . . . . 6 (𝑥 = ∅ → ((𝐹𝐶) ≤ (♯‘𝑥) ↔ (𝐹𝐶) ≤ 0))
29 oveq1 7364 . . . . . . 7 (𝑥 = ∅ → (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀))
3029sseq1d 3975 . . . . . 6 (𝑥 = ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}) ↔ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
3128, 30anbi12d 631 . . . . 5 (𝑥 = ∅ → (((𝐹𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})) ↔ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
3224, 31rspc2ev 3592 . . . 4 ((𝐶𝑅 ∧ ∅ ∈ 𝒫 𝑠 ∧ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
338, 10, 13, 18, 32syl112anc 1374 . . 3 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
341, 3, 4, 5, 7, 33ramub 16885 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ≤ 0)
35 ramubcl 16890 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (0 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
363, 4, 5, 7, 34, 35syl32anc 1378 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
37 nn0le0eq0 12441 . . 3 ((𝑀 Ramsey 𝐹) ∈ ℕ0 → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3836, 37syl 17 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3934, 38mpbid 231 1 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   class class class wbr 5105  ccnv 5632  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  cle 11190  cn 12153  0cn0 12413  chash 14230   Ramsey cram 16871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-fac 14174  df-bc 14203  df-hash 14231  df-ram 16873
This theorem is referenced by:  ramz  16897  ramcl  16901
  Copyright terms: Public domain W3C validator