MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz2 Structured version   Visualization version   GIF version

Theorem ramz2 16653
Description: The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)

Proof of Theorem ramz2
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 simpl1 1189 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ)
32nnnn0d 12223 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ0)
4 simpl2 1190 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑅𝑉)
5 simpl3 1191 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝐹:𝑅⟶ℕ0)
6 0nn0 12178 . . . 4 0 ∈ ℕ0
76a1i 11 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 0 ∈ ℕ0)
8 simplrl 773 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝐶𝑅)
9 0elpw 5273 . . . . 5 ∅ ∈ 𝒫 𝑠
109a1i 11 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∅ ∈ 𝒫 𝑠)
11 simplrr 774 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) = 0)
12 0le0 12004 . . . . 5 0 ≤ 0
1311, 12eqbrtrdi 5109 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) ≤ 0)
14 simpll1 1210 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑀 ∈ ℕ)
1510hashbc 16636 . . . . . 6 (𝑀 ∈ ℕ → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
1614, 15syl 17 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
17 0ss 4327 . . . . 5 ∅ ⊆ (𝑓 “ {𝐶})
1816, 17eqsstrdi 3971 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))
19 fveq2 6756 . . . . . . 7 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
2019breq1d 5080 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) ≤ (♯‘𝑥) ↔ (𝐹𝐶) ≤ (♯‘𝑥)))
21 sneq 4568 . . . . . . . 8 (𝑐 = 𝐶 → {𝑐} = {𝐶})
2221imaeq2d 5958 . . . . . . 7 (𝑐 = 𝐶 → (𝑓 “ {𝑐}) = (𝑓 “ {𝐶}))
2322sseq2d 3949 . . . . . 6 (𝑐 = 𝐶 → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
2420, 23anbi12d 630 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
25 fveq2 6756 . . . . . . . 8 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
26 hash0 14010 . . . . . . . 8 (♯‘∅) = 0
2725, 26eqtrdi 2795 . . . . . . 7 (𝑥 = ∅ → (♯‘𝑥) = 0)
2827breq2d 5082 . . . . . 6 (𝑥 = ∅ → ((𝐹𝐶) ≤ (♯‘𝑥) ↔ (𝐹𝐶) ≤ 0))
29 oveq1 7262 . . . . . . 7 (𝑥 = ∅ → (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀))
3029sseq1d 3948 . . . . . 6 (𝑥 = ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}) ↔ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
3128, 30anbi12d 630 . . . . 5 (𝑥 = ∅ → (((𝐹𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})) ↔ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
3224, 31rspc2ev 3564 . . . 4 ((𝐶𝑅 ∧ ∅ ∈ 𝒫 𝑠 ∧ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
338, 10, 13, 18, 32syl112anc 1372 . . 3 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
341, 3, 4, 5, 7, 33ramub 16642 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ≤ 0)
35 ramubcl 16647 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (0 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
363, 4, 5, 7, 34, 35syl32anc 1376 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
37 nn0le0eq0 12191 . . 3 ((𝑀 Ramsey 𝐹) ∈ ℕ0 → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3836, 37syl 17 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3934, 38mpbid 231 1 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  cle 10941  cn 11903  0cn0 12163  chash 13972   Ramsey cram 16628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945  df-hash 13973  df-ram 16630
This theorem is referenced by:  ramz  16654  ramcl  16658
  Copyright terms: Public domain W3C validator