Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . 3
⊢ (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
2 | | simpl1 1193 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → 𝑀 ∈ ℕ) |
3 | 2 | nnnn0d 12150 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → 𝑀 ∈
ℕ0) |
4 | | simpl2 1194 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → 𝑅 ∈ 𝑉) |
5 | | simpl3 1195 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → 𝐹:𝑅⟶ℕ0) |
6 | | 0nn0 12105 |
. . . 4
⊢ 0 ∈
ℕ0 |
7 | 6 | a1i 11 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → 0 ∈
ℕ0) |
8 | | simplrl 777 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝐶 ∈ 𝑅) |
9 | | 0elpw 5247 |
. . . . 5
⊢ ∅
∈ 𝒫 𝑠 |
10 | 9 | a1i 11 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∅ ∈ 𝒫 𝑠) |
11 | | simplrr 778 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹‘𝐶) = 0) |
12 | | 0le0 11931 |
. . . . 5
⊢ 0 ≤
0 |
13 | 11, 12 | eqbrtrdi 5092 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹‘𝐶) ≤ 0) |
14 | | simpll1 1214 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑀 ∈ ℕ) |
15 | 1 | 0hashbc 16560 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
(∅(𝑎 ∈ V, 𝑖 ∈ ℕ0
↦ {𝑏 ∈ 𝒫
𝑎 ∣
(♯‘𝑏) = 𝑖})𝑀) = ∅) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅) |
17 | | 0ss 4311 |
. . . . 5
⊢ ∅
⊆ (◡𝑓 “ {𝐶}) |
18 | 16, 17 | eqsstrdi 3955 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶})) |
19 | | fveq2 6717 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝐹‘𝑐) = (𝐹‘𝐶)) |
20 | 19 | breq1d 5063 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) ≤ (♯‘𝑥) ↔ (𝐹‘𝐶) ≤ (♯‘𝑥))) |
21 | | sneq 4551 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → {𝑐} = {𝐶}) |
22 | 21 | imaeq2d 5929 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (◡𝑓 “ {𝑐}) = (◡𝑓 “ {𝐶})) |
23 | 22 | sseq2d 3933 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}) ↔ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶}))) |
24 | 20, 23 | anbi12d 634 |
. . . . 5
⊢ (𝑐 = 𝐶 → (((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐})) ↔ ((𝐹‘𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶})))) |
25 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
(♯‘∅)) |
26 | | hash0 13934 |
. . . . . . . 8
⊢
(♯‘∅) = 0 |
27 | 25, 26 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
0) |
28 | 27 | breq2d 5065 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝐹‘𝐶) ≤ (♯‘𝑥) ↔ (𝐹‘𝐶) ≤ 0)) |
29 | | oveq1 7220 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)) |
30 | 29 | sseq1d 3932 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶}) ↔ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶}))) |
31 | 28, 30 | anbi12d 634 |
. . . . 5
⊢ (𝑥 = ∅ → (((𝐹‘𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶})) ↔ ((𝐹‘𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶})))) |
32 | 24, 31 | rspc2ev 3549 |
. . . 4
⊢ ((𝐶 ∈ 𝑅 ∧ ∅ ∈ 𝒫 𝑠 ∧ ((𝐹‘𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝐶}))) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
33 | 8, 10, 13, 18, 32 | syl112anc 1376 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
34 | 1, 3, 4, 5, 7, 33 | ramub 16566 |
. 2
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → (𝑀 Ramsey 𝐹) ≤ 0) |
35 | | ramubcl 16571 |
. . . 4
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (0 ∈
ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 0)) → (𝑀 Ramsey 𝐹) ∈
ℕ0) |
36 | 3, 4, 5, 7, 34, 35 | syl32anc 1380 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → (𝑀 Ramsey 𝐹) ∈
ℕ0) |
37 | | nn0le0eq0 12118 |
. . 3
⊢ ((𝑀 Ramsey 𝐹) ∈ ℕ0 → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0)) |
38 | 36, 37 | syl 17 |
. 2
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0)) |
39 | 34, 38 | mpbid 235 |
1
⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0) |