MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz2 Structured version   Visualization version   GIF version

Theorem ramz2 16996
Description: The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)

Proof of Theorem ramz2
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 simpl1 1188 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ)
32nnnn0d 12565 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ0)
4 simpl2 1189 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑅𝑉)
5 simpl3 1190 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝐹:𝑅⟶ℕ0)
6 0nn0 12520 . . . 4 0 ∈ ℕ0
76a1i 11 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 0 ∈ ℕ0)
8 simplrl 775 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝐶𝑅)
9 0elpw 5356 . . . . 5 ∅ ∈ 𝒫 𝑠
109a1i 11 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∅ ∈ 𝒫 𝑠)
11 simplrr 776 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) = 0)
12 0le0 12346 . . . . 5 0 ≤ 0
1311, 12eqbrtrdi 5188 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) ≤ 0)
14 simpll1 1209 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑀 ∈ ℕ)
1510hashbc 16979 . . . . . 6 (𝑀 ∈ ℕ → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
1614, 15syl 17 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = ∅)
17 0ss 4398 . . . . 5 ∅ ⊆ (𝑓 “ {𝐶})
1816, 17eqsstrdi 4031 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))
19 fveq2 6896 . . . . . . 7 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
2019breq1d 5159 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) ≤ (♯‘𝑥) ↔ (𝐹𝐶) ≤ (♯‘𝑥)))
21 sneq 4640 . . . . . . . 8 (𝑐 = 𝐶 → {𝑐} = {𝐶})
2221imaeq2d 6064 . . . . . . 7 (𝑐 = 𝐶 → (𝑓 “ {𝑐}) = (𝑓 “ {𝐶}))
2322sseq2d 4009 . . . . . 6 (𝑐 = 𝐶 → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
2420, 23anbi12d 630 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
25 fveq2 6896 . . . . . . . 8 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
26 hash0 14362 . . . . . . . 8 (♯‘∅) = 0
2725, 26eqtrdi 2781 . . . . . . 7 (𝑥 = ∅ → (♯‘𝑥) = 0)
2827breq2d 5161 . . . . . 6 (𝑥 = ∅ → ((𝐹𝐶) ≤ (♯‘𝑥) ↔ (𝐹𝐶) ≤ 0))
29 oveq1 7426 . . . . . . 7 (𝑥 = ∅ → (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) = (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀))
3029sseq1d 4008 . . . . . 6 (𝑥 = ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}) ↔ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
3128, 30anbi12d 630 . . . . 5 (𝑥 = ∅ → (((𝐹𝐶) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})) ↔ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
3224, 31rspc2ev 3619 . . . 4 ((𝐶𝑅 ∧ ∅ ∈ 𝒫 𝑠 ∧ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
338, 10, 13, 18, 32syl112anc 1371 . . 3 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
341, 3, 4, 5, 7, 33ramub 16985 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ≤ 0)
35 ramubcl 16990 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (0 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
363, 4, 5, 7, 34, 35syl32anc 1375 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
37 nn0le0eq0 12533 . . 3 ((𝑀 Ramsey 𝐹) ∈ ℕ0 → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3836, 37syl 17 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3934, 38mpbid 231 1 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  {crab 3418  Vcvv 3461  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630   class class class wbr 5149  ccnv 5677  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  cmpo 7421  0cc0 11140  cle 11281  cn 12245  0cn0 12505  chash 14325   Ramsey cram 16971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-seq 14003  df-fac 14269  df-bc 14298  df-hash 14326  df-ram 16973
This theorem is referenced by:  ramz  16997  ramcl  17001
  Copyright terms: Public domain W3C validator