Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linerflx1 Structured version   Visualization version   GIF version

Theorem linerflx1 32631
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linerflx1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))

Proof of Theorem linerflx1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1248 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝔼‘𝑁))
2 colineartriv1 32549 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
323adant3r3 1235 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
4 breq1 4811 . . . 4 (𝑥 = 𝑃 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑃 Colinear ⟨𝑃, 𝑄⟩))
54elrab 3518 . . 3 (𝑃 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑃 Colinear ⟨𝑃, 𝑄⟩))
61, 3, 5sylanbrc 578 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
7 fvline2 32628 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
86, 7eleqtrrd 2846 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107  wcel 2155  wne 2936  {crab 3058  cop 4339   class class class wbr 4808  cfv 6067  (class class class)co 6841  cn 11273  𝔼cee 26058   Colinear ccolin 32519  Linecline2 32616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-ec 7948  df-map 8061  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-sup 8554  df-oi 8621  df-card 9015  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-n0 11538  df-z 11624  df-uz 11886  df-rp 12028  df-ico 12382  df-icc 12383  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-clim 14505  df-sum 14703  df-ee 26061  df-btwn 26062  df-cgr 26063  df-colinear 32521  df-line2 32619
This theorem is referenced by:  linerflx2  32633  hilbert1.1  32636
  Copyright terms: Public domain W3C validator