![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjsub | Structured version Visualization version GIF version |
Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.) |
Ref | Expression |
---|---|
cjsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11490 | . . 3 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | cjadd 15120 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵))) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵))) |
4 | negsub 11538 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
5 | 4 | fveq2d 6901 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = (∗‘(𝐴 − 𝐵))) |
6 | cjneg 15126 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (∗‘-𝐵) = -(∗‘𝐵)) | |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘-𝐵) = -(∗‘𝐵)) |
8 | 7 | oveq2d 7436 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) + -(∗‘𝐵))) |
9 | cjcl 15084 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
10 | cjcl 15084 | . . . 4 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
11 | negsub 11538 | . . . 4 ⊢ (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | |
12 | 9, 10, 11 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
13 | 8, 12 | eqtrd 2768 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
14 | 3, 5, 13 | 3eqtr3d 2776 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 + caddc 11141 − cmin 11474 -cneg 11475 ∗ccj 15075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-2 12305 df-cj 15078 df-re 15079 df-im 15080 |
This theorem is referenced by: sqabssub 15262 cjcn2 15576 mul4sqlem 16921 dvcjbr 25880 isosctrlem2 26750 atancj 26841 dipsubdi 30658 his2sub2 30902 sigarmf 46242 |
Copyright terms: Public domain | W3C validator |