MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjsub Structured version   Visualization version   GIF version

Theorem cjsub 15095
Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
Assertion
Ref Expression
cjsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))

Proof of Theorem cjsub
StepHypRef Expression
1 negcl 11459 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 cjadd 15087 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵)))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵)))
4 negsub 11507 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54fveq2d 6895 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = (∗‘(𝐴𝐵)))
6 cjneg 15093 . . . . 5 (𝐵 ∈ ℂ → (∗‘-𝐵) = -(∗‘𝐵))
76adantl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘-𝐵) = -(∗‘𝐵))
87oveq2d 7424 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) + -(∗‘𝐵)))
9 cjcl 15051 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
10 cjcl 15051 . . . 4 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
11 negsub 11507 . . . 4 (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
129, 10, 11syl2an 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
138, 12eqtrd 2772 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
143, 5, 133eqtr3d 2780 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7408  cc 11107   + caddc 11112  cmin 11443  -cneg 11444  ccj 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-cj 15045  df-re 15046  df-im 15047
This theorem is referenced by:  sqabssub  15229  cjcn2  15543  mul4sqlem  16885  dvcjbr  25465  isosctrlem2  26321  atancj  26412  dipsubdi  30097  his2sub2  30341  sigarmf  45560
  Copyright terms: Public domain W3C validator