MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjsub Structured version   Visualization version   GIF version

Theorem cjsub 14502
Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
Assertion
Ref Expression
cjsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))

Proof of Theorem cjsub
StepHypRef Expression
1 negcl 10880 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 cjadd 14494 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵)))
31, 2sylan2 594 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵)))
4 negsub 10928 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54fveq2d 6669 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = (∗‘(𝐴𝐵)))
6 cjneg 14500 . . . . 5 (𝐵 ∈ ℂ → (∗‘-𝐵) = -(∗‘𝐵))
76adantl 484 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘-𝐵) = -(∗‘𝐵))
87oveq2d 7166 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) + -(∗‘𝐵)))
9 cjcl 14458 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
10 cjcl 14458 . . . 4 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
11 negsub 10928 . . . 4 (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
129, 10, 11syl2an 597 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
138, 12eqtrd 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
143, 5, 133eqtr3d 2864 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  cc 10529   + caddc 10534  cmin 10864  -cneg 10865  ccj 14449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-cj 14452  df-re 14453  df-im 14454
This theorem is referenced by:  sqabssub  14637  cjcn2  14950  mul4sqlem  16283  dvcjbr  24540  isosctrlem2  25391  atancj  25482  dipsubdi  28620  his2sub2  28864  sigarmf  43104
  Copyright terms: Public domain W3C validator