Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cjneg | Structured version Visualization version GIF version |
Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjneg | ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 14900 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 11083 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
3 | ax-icn 11010 | . . . . 5 ⊢ i ∈ ℂ | |
4 | imcl 14901 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 11083 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
6 | mulcl 11035 | . . . . 5 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
7 | 3, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
8 | 2, 7 | neg2subd 11429 | . . 3 ⊢ (𝐴 ∈ ℂ → (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴))) |
9 | reneg 14915 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | |
10 | imneg 14923 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | |
11 | 10 | oveq2d 7333 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = (i · -(ℑ‘𝐴))) |
12 | mulneg2 11492 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
13 | 3, 5, 12 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
14 | 11, 13 | eqtrd 2777 | . . . 4 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = -(i · (ℑ‘𝐴))) |
15 | 9, 14 | oveq12d 7335 | . . 3 ⊢ (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴)))) |
16 | 2, 7 | negsubdi2d 11428 | . . 3 ⊢ (𝐴 ∈ ℂ → -((ℜ‘𝐴) − (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴))) |
17 | 8, 15, 16 | 3eqtr4d 2787 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
18 | negcl 11301 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
19 | remim 14907 | . . 3 ⊢ (-𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴)))) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴)))) |
21 | remim 14907 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
22 | 21 | negeqd 11295 | . 2 ⊢ (𝐴 ∈ ℂ → -(∗‘𝐴) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
23 | 17, 20, 22 | 3eqtr4d 2787 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6466 (class class class)co 7317 ℂcc 10949 ici 10953 · cmul 10956 − cmin 11285 -cneg 11286 ∗ccj 14886 ℜcre 14887 ℑcim 14888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-2 12116 df-cj 14889 df-re 14890 df-im 14891 |
This theorem is referenced by: cjsub 14939 cjnegi 14972 cjnegd 15001 absneg 15068 |
Copyright terms: Public domain | W3C validator |