MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjneg Structured version   Visualization version   GIF version

Theorem cjneg 14506
Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjneg (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))

Proof of Theorem cjneg
StepHypRef Expression
1 recl 14469 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 10669 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 10596 . . . . 5 i ∈ ℂ
4 imcl 14470 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 10669 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 10621 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 589 . . . 4 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7neg2subd 11014 . . 3 (𝐴 ∈ ℂ → (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴)))
9 reneg 14484 . . . 4 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
10 imneg 14492 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
1110oveq2d 7172 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = (i · -(ℑ‘𝐴)))
12 mulneg2 11077 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
133, 5, 12sylancr 589 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1411, 13eqtrd 2856 . . . 4 (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = -(i · (ℑ‘𝐴)))
159, 14oveq12d 7174 . . 3 (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))))
162, 7negsubdi2d 11013 . . 3 (𝐴 ∈ ℂ → -((ℜ‘𝐴) − (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴)))
178, 15, 163eqtr4d 2866 . 2 (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
18 negcl 10886 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
19 remim 14476 . . 3 (-𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))))
2018, 19syl 17 . 2 (𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))))
21 remim 14476 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
2221negeqd 10880 . 2 (𝐴 ∈ ℂ → -(∗‘𝐴) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
2317, 20, 223eqtr4d 2866 1 (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  ici 10539   · cmul 10542  cmin 10870  -cneg 10871  ccj 14455  cre 14456  cim 14457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-cj 14458  df-re 14459  df-im 14460
This theorem is referenced by:  cjsub  14508  cjnegi  14541  cjnegd  14570  absneg  14637
  Copyright terms: Public domain W3C validator