MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcan2 Structured version   Visualization version   GIF version

Theorem divcan2 11295
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
divcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)

Proof of Theorem divcan2
StepHypRef Expression
1 eqid 2826 . 2 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2 simp1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
3 divcl 11293 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
4 3simpc 1144 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
5 divmul 11290 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
62, 3, 4, 5syl3anc 1365 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
71, 6mpbii 234 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  (class class class)co 7148  cc 10524  0cc0 10526   · cmul 10531   / cdiv 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287
This theorem is referenced by:  divcan1  11296  recid  11301  div11  11315  divmuldiv  11329  dmdcan  11339  divcan2zi  11366  divcan2d  11407  zdiv  12041  modlt  13238  addcj  14497  sqrlem7  14598  bpoly2  15401  bpoly3  15402  efgt0  15446  sin02gt0  15535  pythagtriplem16  16157  sinq12gt0  25008  coseq1  25025  efeq1  25026  basellem3  25574  chtub  25702  4ipval2  28399  rexdiv  30516  sin2h  34749  cos2h  34750  mblfinlem3  34798  itg2addnclem3  34812  ftc1anclem6  34839  dfodd6  43634  nn0enn0exALTV  43697  nnennexALTV  43698  nn0enn0ex  44416  nnennex  44417  blennn0em1  44483
  Copyright terms: Public domain W3C validator