MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcan2 Structured version   Visualization version   GIF version

Theorem divcan2 11791
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
divcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)

Proof of Theorem divcan2
StepHypRef Expression
1 eqid 2733 . 2 (𝐴 / 𝐵) = (𝐴 / 𝐵)
2 simp1 1136 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
3 divcl 11789 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
4 3simpc 1150 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
5 divmul 11786 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
62, 3, 4, 5syl3anc 1373 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
71, 6mpbii 233 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7352  cc 11011  0cc0 11013   · cmul 11018   / cdiv 11781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782
This theorem is referenced by:  divcan1  11792  recid  11797  div11OLD  11812  divmuldiv  11828  dmdcan  11838  divcan2zi  11865  divcan2d  11906  zdiv  12549  modlt  13786  addcj  15057  01sqrexlem7  15157  bpoly2  15966  bpoly3  15967  efgt0  16014  sin02gt0  16103  pythagtriplem16  16744  sinq12gt0  26444  coseq1  26462  efeq1  26465  basellem3  27021  chtub  27151  4ipval2  30690  rexdiv  32913  sin2h  37670  cos2h  37671  mblfinlem3  37719  itg2addnclem3  37733  ftc1anclem6  37758  3rdpwhole  42410  dfodd6  47761  nn0enn0exALTV  47824  nnennexALTV  47825  nn0enn0ex  48649  nnennex  48650  blennn0em1  48716
  Copyright terms: Public domain W3C validator