![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divcan2 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
divcan2 | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ต ยท (๐ด / ๐ต)) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 โข (๐ด / ๐ต) = (๐ด / ๐ต) | |
2 | simp1 1136 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ๐ด โ โ) | |
3 | divcl 11874 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ด / ๐ต) โ โ) | |
4 | 3simpc 1150 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ต โ โ โง ๐ต โ 0)) | |
5 | divmul 11871 | . . 3 โข ((๐ด โ โ โง (๐ด / ๐ต) โ โ โง (๐ต โ โ โง ๐ต โ 0)) โ ((๐ด / ๐ต) = (๐ด / ๐ต) โ (๐ต ยท (๐ด / ๐ต)) = ๐ด)) | |
6 | 2, 3, 4, 5 | syl3anc 1371 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ((๐ด / ๐ต) = (๐ด / ๐ต) โ (๐ต ยท (๐ด / ๐ต)) = ๐ด)) |
7 | 1, 6 | mpbii 232 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ต ยท (๐ด / ๐ต)) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โ wne 2940 (class class class)co 7405 โcc 11104 0cc0 11106 ยท cmul 11111 / cdiv 11867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 |
This theorem is referenced by: divcan1 11877 recid 11882 div11 11896 divmuldiv 11910 dmdcan 11920 divcan2zi 11947 divcan2d 11988 zdiv 12628 modlt 13841 addcj 15091 01sqrexlem7 15191 bpoly2 15997 bpoly3 15998 efgt0 16042 sin02gt0 16131 pythagtriplem16 16759 sinq12gt0 26008 coseq1 26025 efeq1 26028 basellem3 26576 chtub 26704 4ipval2 29948 rexdiv 32079 sin2h 36466 cos2h 36467 mblfinlem3 36515 itg2addnclem3 36529 ftc1anclem6 36554 dfodd6 46291 nn0enn0exALTV 46354 nnennexALTV 46355 nn0enn0ex 47163 nnennex 47164 blennn0em1 47230 |
Copyright terms: Public domain | W3C validator |