Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme10 Structured version   Visualization version   GIF version

Theorem cdleme10 38763
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐷 represents s2. In their notation, we prove s ∨ s2 = s ∨ r. (Contributed by NM, 9-Jun-2012.)
Hypotheses
Ref Expression
cdleme10.l ≀ = (leβ€˜πΎ)
cdleme10.j ∨ = (joinβ€˜πΎ)
cdleme10.m ∧ = (meetβ€˜πΎ)
cdleme10.a 𝐴 = (Atomsβ€˜πΎ)
cdleme10.h 𝐻 = (LHypβ€˜πΎ)
cdleme10.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ 𝐷) = (𝑆 ∨ 𝑅))

Proof of Theorem cdleme10
StepHypRef Expression
1 cdleme10.d . . 3 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
21oveq2i 7369 . 2 (𝑆 ∨ 𝐷) = (𝑆 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))
3 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
4 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑆 ∈ 𝐴)
5 simp2 1138 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑅 ∈ 𝐴)
6 eqid 2733 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdleme10.j . . . . . 6 ∨ = (joinβ€˜πΎ)
8 cdleme10.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatjcl 37875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
103, 5, 4, 9syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
11 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
12 cdleme10.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
136, 12lhpbase 38507 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
153hllatd 37872 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
166, 8atbase 37797 . . . . . 6 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
17163ad2ant2 1135 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
186, 8atbase 37797 . . . . . 6 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
194, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
20 cdleme10.l . . . . . 6 ≀ = (leβ€˜πΎ)
216, 20, 7latlej2 18343 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ 𝑆 ≀ (𝑅 ∨ 𝑆))
2215, 17, 19, 21syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑆 ≀ (𝑅 ∨ 𝑆))
23 cdleme10.m . . . . 5 ∧ = (meetβ€˜πΎ)
246, 20, 7, 23, 8atmod3i1 38373 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑆 ≀ (𝑅 ∨ 𝑆)) β†’ (𝑆 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑆 ∨ π‘Š)))
253, 4, 10, 14, 22, 24syl131anc 1384 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑆 ∨ π‘Š)))
266, 7latjcom 18341 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑅))
2715, 17, 19, 26syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑅))
28 eqid 2733 . . . . . 6 (1.β€˜πΎ) = (1.β€˜πΎ)
2920, 7, 28, 8, 12lhpjat2 38530 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ π‘Š) = (1.β€˜πΎ))
30293adant2 1132 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ π‘Š) = (1.β€˜πΎ))
3127, 30oveq12d 7376 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑆 ∨ π‘Š)) = ((𝑆 ∨ 𝑅) ∧ (1.β€˜πΎ)))
32 hlol 37869 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
333, 32syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝐾 ∈ OL)
346, 7latjcl 18333 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑆 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
3515, 19, 17, 34syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
366, 23, 28olm11 37735 . . . 4 ((𝐾 ∈ OL ∧ (𝑆 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) β†’ ((𝑆 ∨ 𝑅) ∧ (1.β€˜πΎ)) = (𝑆 ∨ 𝑅))
3733, 35, 36syl2anc 585 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((𝑆 ∨ 𝑅) ∧ (1.β€˜πΎ)) = (𝑆 ∨ 𝑅))
3825, 31, 373eqtrd 2777 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = (𝑆 ∨ 𝑅))
392, 38eqtrid 2785 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ 𝐷) = (𝑆 ∨ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  1.cp1 18318  Latclat 18325  OLcol 37682  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-psubsp 38012  df-pmap 38013  df-padd 38305  df-lhyp 38497
This theorem is referenced by:  cdleme10tN  38767  cdleme20aN  38818  cdleme20g  38824
  Copyright terms: Public domain W3C validator