Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme10 Structured version   Visualization version   GIF version

Theorem cdleme10 38005
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐷 represents s2. In their notation, we prove s s2 = s r. (Contributed by NM, 9-Jun-2012.)
Hypotheses
Ref Expression
cdleme10.l = (le‘𝐾)
cdleme10.j = (join‘𝐾)
cdleme10.m = (meet‘𝐾)
cdleme10.a 𝐴 = (Atoms‘𝐾)
cdleme10.h 𝐻 = (LHyp‘𝐾)
cdleme10.d 𝐷 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝐷) = (𝑆 𝑅))

Proof of Theorem cdleme10
StepHypRef Expression
1 cdleme10.d . . 3 𝐷 = ((𝑅 𝑆) 𝑊)
21oveq2i 7224 . 2 (𝑆 𝐷) = (𝑆 ((𝑅 𝑆) 𝑊))
3 simp1l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐾 ∈ HL)
4 simp3l 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑆𝐴)
5 simp2 1139 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑅𝐴)
6 eqid 2737 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 cdleme10.j . . . . . 6 = (join‘𝐾)
8 cdleme10.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 37118 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
103, 5, 4, 9syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑅 𝑆) ∈ (Base‘𝐾))
11 simp1r 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑊𝐻)
12 cdleme10.h . . . . . 6 𝐻 = (LHyp‘𝐾)
136, 12lhpbase 37749 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1411, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑊 ∈ (Base‘𝐾))
153hllatd 37115 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐾 ∈ Lat)
166, 8atbase 37040 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
17163ad2ant2 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑅 ∈ (Base‘𝐾))
186, 8atbase 37040 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
194, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑆 ∈ (Base‘𝐾))
20 cdleme10.l . . . . . 6 = (le‘𝐾)
216, 20, 7latlej2 17955 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑅 𝑆))
2215, 17, 19, 21syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑆 (𝑅 𝑆))
23 cdleme10.m . . . . 5 = (meet‘𝐾)
246, 20, 7, 23, 8atmod3i1 37615 . . . 4 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑆 (𝑅 𝑆)) → (𝑆 ((𝑅 𝑆) 𝑊)) = ((𝑅 𝑆) (𝑆 𝑊)))
253, 4, 10, 14, 22, 24syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 ((𝑅 𝑆) 𝑊)) = ((𝑅 𝑆) (𝑆 𝑊)))
266, 7latjcom 17953 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑅 𝑆) = (𝑆 𝑅))
2715, 17, 19, 26syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑅 𝑆) = (𝑆 𝑅))
28 eqid 2737 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
2920, 7, 28, 8, 12lhpjat2 37772 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝑊) = (1.‘𝐾))
30293adant2 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝑊) = (1.‘𝐾))
3127, 30oveq12d 7231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝑅 𝑆) (𝑆 𝑊)) = ((𝑆 𝑅) (1.‘𝐾)))
32 hlol 37112 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
333, 32syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐾 ∈ OL)
346, 7latjcl 17945 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑆 𝑅) ∈ (Base‘𝐾))
3515, 19, 17, 34syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝑅) ∈ (Base‘𝐾))
366, 23, 28olm11 36978 . . . 4 ((𝐾 ∈ OL ∧ (𝑆 𝑅) ∈ (Base‘𝐾)) → ((𝑆 𝑅) (1.‘𝐾)) = (𝑆 𝑅))
3733, 35, 36syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝑆 𝑅) (1.‘𝐾)) = (𝑆 𝑅))
3825, 31, 373eqtrd 2781 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 ((𝑅 𝑆) 𝑊)) = (𝑆 𝑅))
392, 38syl5eq 2790 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝐷) = (𝑆 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  meetcmee 17819  1.cp1 17930  Latclat 17937  OLcol 36925  Atomscatm 37014  HLchlt 37101  LHypclh 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739
This theorem is referenced by:  cdleme10tN  38009  cdleme20aN  38060  cdleme20g  38066
  Copyright terms: Public domain W3C validator