Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2fvlem Structured version   Visualization version   GIF version

Theorem cdlemg2fvlem 39991
Description: Lemma for cdlemg2fv 39996. (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b 𝐡 = (Baseβ€˜πΎ)
cdlemg2.l ≀ = (leβ€˜πΎ)
cdlemg2.j ∨ = (joinβ€˜πΎ)
cdlemg2.m ∧ = (meetβ€˜πΎ)
cdlemg2.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg2.h 𝐻 = (LHypβ€˜πΎ)
cdlemg2.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg2ex.u π‘ˆ = ((𝑝 ∨ π‘ž) ∧ π‘Š)
cdlemg2ex.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑑) ∧ π‘Š)))
cdlemg2ex.e 𝐸 = ((𝑝 ∨ π‘ž) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemg2ex.g 𝐺 = (π‘₯ ∈ 𝐡 ↦ if((𝑝 β‰  π‘ž ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
Assertion
Ref Expression
cdlemg2fvlem (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (πΉβ€˜π‘‹) = ((πΉβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)))
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑋,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ž,𝑝,𝐴   𝐹,𝑝,π‘ž   𝐻,𝑝,π‘ž   𝐾,𝑝,π‘ž   ≀ ,𝑝,π‘ž   𝑇,𝑝,π‘ž   π‘Š,𝑝,π‘ž,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑝,π‘ž   𝑃,𝑝,π‘ž   𝐡,𝑝,π‘ž   ∧ ,𝑝,π‘ž   𝑋,𝑝,π‘ž
Allowed substitution hints:   𝐷(𝑑,π‘ž,𝑝)   𝑇(π‘₯,𝑦,𝑧,𝑑,𝑠)   π‘ˆ(π‘ž,𝑝)   𝐸(𝑑,𝑠,π‘ž,𝑝)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐺(π‘₯,𝑦,𝑧,𝑑,𝑠,π‘ž,𝑝)

Proof of Theorem cdlemg2fvlem
StepHypRef Expression
1 simp1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp3l 1199 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐹 ∈ 𝑇)
3 simp2r 1198 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
4 simp2l 1197 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
5 simp3r 1200 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)
64, 5jca 511 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
7 cdlemg2.b . . 3 𝐡 = (Baseβ€˜πΎ)
8 cdlemg2.l . . 3 ≀ = (leβ€˜πΎ)
9 cdlemg2.j . . 3 ∨ = (joinβ€˜πΎ)
10 cdlemg2.m . . 3 ∧ = (meetβ€˜πΎ)
11 cdlemg2.a . . 3 𝐴 = (Atomsβ€˜πΎ)
12 cdlemg2.h . . 3 𝐻 = (LHypβ€˜πΎ)
13 cdlemg2.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
14 cdlemg2ex.u . . 3 π‘ˆ = ((𝑝 ∨ π‘ž) ∧ π‘Š)
15 cdlemg2ex.d . . 3 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑑) ∧ π‘Š)))
16 cdlemg2ex.e . . 3 𝐸 = ((𝑝 ∨ π‘ž) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
17 cdlemg2ex.g . . 3 𝐺 = (π‘₯ ∈ 𝐡 ↦ if((𝑝 β‰  π‘ž ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
18 fveq1 6890 . . . 4 (𝐹 = 𝐺 β†’ (πΉβ€˜π‘‹) = (πΊβ€˜π‘‹))
19 fveq1 6890 . . . . 5 (𝐹 = 𝐺 β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ))
2019oveq1d 7429 . . . 4 (𝐹 = 𝐺 β†’ ((πΉβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)) = ((πΊβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)))
2118, 20eqeq12d 2743 . . 3 (𝐹 = 𝐺 β†’ ((πΉβ€˜π‘‹) = ((πΉβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)) ↔ (πΊβ€˜π‘‹) = ((πΊβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š))))
227, 8, 9, 10, 11, 12, 14, 15, 16, 17cdleme48fvg 39897 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (πΊβ€˜π‘‹) = ((πΊβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)))
23223expb 1118 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š)) ∧ ((𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋))) β†’ (πΊβ€˜π‘‹) = ((πΊβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)))
247, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 23cdlemg2ce 39989 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋))) β†’ (πΉβ€˜π‘‹) = ((πΉβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)))
251, 2, 3, 6, 24syl112anc 1372 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (πΉβ€˜π‘‹) = ((πΉβ€˜π‘ƒ) ∨ (𝑋 ∧ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  β¦‹csb 3889  ifcif 4524   class class class wbr 5142   ↦ cmpt 5225  β€˜cfv 6542  β„©crio 7369  (class class class)co 7414  Basecbs 17165  lecple 17225  joincjn 18288  meetcmee 18289  Atomscatm 38659  HLchlt 38746  LHypclh 39381  LTrncltrn 39498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-riotaBAD 38349
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-undef 8270  df-map 8836  df-proset 18272  df-poset 18290  df-plt 18307  df-lub 18323  df-glb 18324  df-join 18325  df-meet 18326  df-p0 18402  df-p1 18403  df-lat 18409  df-clat 18476  df-oposet 38572  df-ol 38574  df-oml 38575  df-covers 38662  df-ats 38663  df-atl 38694  df-cvlat 38718  df-hlat 38747  df-llines 38895  df-lplanes 38896  df-lvols 38897  df-lines 38898  df-psubsp 38900  df-pmap 38901  df-padd 39193  df-lhyp 39385  df-laut 39386  df-ldil 39501  df-ltrn 39502  df-trl 39556
This theorem is referenced by:  cdlemg2fv  39996
  Copyright terms: Public domain W3C validator