Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid2N Structured version   Visualization version   GIF version

Theorem cdlemkfid2N 40828
Description: Lemma for cdlemkfid3N 40830. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
Assertion
Ref Expression
cdlemkfid2N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑍 = (𝑏𝑃))

Proof of Theorem cdlemkfid2N
StepHypRef Expression
1 cdlemk5.z . 2 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
2 simp1r 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 = 𝑁)
32fveq1d 6921 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹𝑃) = (𝑁𝑃))
43oveq1d 7460 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝑏𝐹))) = ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
54oveq2d 7461 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝑏)) ((𝐹𝑃) (𝑅‘(𝑏𝐹)))) = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))))
6 cdlemk5.b . . . . 5 𝐵 = (Base‘𝐾)
7 cdlemk5.l . . . . 5 = (le‘𝐾)
8 cdlemk5.j . . . . 5 = (join‘𝐾)
9 cdlemk5.m . . . . 5 = (meet‘𝐾)
10 cdlemk5.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 cdlemk5.h . . . . 5 𝐻 = (LHyp‘𝐾)
12 cdlemk5.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemk5.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
146, 7, 8, 9, 10, 11, 12, 13cdlemkfid1N 40826 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝑏)) ((𝐹𝑃) (𝑅‘(𝑏𝐹)))) = (𝑏𝑃))
15143adant1r 1177 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝑏)) ((𝐹𝑃) (𝑅‘(𝑏𝐹)))) = (𝑏𝑃))
165, 15eqtr3d 2776 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) = (𝑏𝑃))
171, 16eqtrid 2786 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑍 = (𝑏𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  wne 2942   class class class wbr 5169   I cid 5596  ccnv 5698  cres 5701  ccom 5703  cfv 6572  (class class class)co 7445  Basecbs 17253  lecple 17313  joincjn 18376  meetcmee 18377  Atomscatm 39167  HLchlt 39254  LHypclh 39889  LTrncltrn 40006  trLctrl 40063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-riotaBAD 38857
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-1st 8026  df-2nd 8027  df-undef 8310  df-map 8882  df-proset 18360  df-poset 18378  df-plt 18395  df-lub 18411  df-glb 18412  df-join 18413  df-meet 18414  df-p0 18490  df-p1 18491  df-lat 18497  df-clat 18564  df-oposet 39080  df-ol 39082  df-oml 39083  df-covers 39170  df-ats 39171  df-atl 39202  df-cvlat 39226  df-hlat 39255  df-llines 39403  df-lplanes 39404  df-lvols 39405  df-lines 39406  df-psubsp 39408  df-pmap 39409  df-padd 39701  df-lhyp 39893  df-laut 39894  df-ldil 40009  df-ltrn 40010  df-trl 40064
This theorem is referenced by:  cdlemkfid3N  40830
  Copyright terms: Public domain W3C validator