Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid2N Structured version   Visualization version   GIF version

Theorem cdlemkfid2N 40097
Description: Lemma for cdlemkfid3N 40099. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
Assertion
Ref Expression
cdlemkfid2N ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝑍 = (π‘β€˜π‘ƒ))

Proof of Theorem cdlemkfid2N
StepHypRef Expression
1 cdlemk5.z . 2 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
2 simp1r 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐹 = 𝑁)
32fveq1d 6892 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (πΉβ€˜π‘ƒ) = (π‘β€˜π‘ƒ))
43oveq1d 7426 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) = ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
54oveq2d 7427 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))))
6 cdlemk5.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
7 cdlemk5.l . . . . 5 ≀ = (leβ€˜πΎ)
8 cdlemk5.j . . . . 5 ∨ = (joinβ€˜πΎ)
9 cdlemk5.m . . . . 5 ∧ = (meetβ€˜πΎ)
10 cdlemk5.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
11 cdlemk5.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
12 cdlemk5.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
13 cdlemk5.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
146, 7, 8, 9, 10, 11, 12, 13cdlemkfid1N 40095 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) = (π‘β€˜π‘ƒ))
15143adant1r 1175 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) = (π‘β€˜π‘ƒ))
165, 15eqtr3d 2772 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) = (π‘β€˜π‘ƒ))
171, 16eqtrid 2782 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑏 ∈ 𝑇) ∧ ((π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝑍 = (π‘β€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   class class class wbr 5147   I cid 5572  β—‘ccnv 5674   β†Ύ cres 5677   ∘ ccom 5679  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  trLctrl 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333
This theorem is referenced by:  cdlemkfid3N  40099
  Copyright terms: Public domain W3C validator