![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkfid2N | Structured version Visualization version GIF version |
Description: Lemma for cdlemkfid3N 40335. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
Ref | Expression |
---|---|
cdlemkfid2N | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑍 = (𝑏‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.z | . 2 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
2 | simp1r 1196 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 = 𝑁) | |
3 | 2 | fveq1d 6893 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹‘𝑃) = (𝑁‘𝑃)) |
4 | 3 | oveq1d 7429 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐹‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹))) = ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
5 | 4 | oveq2d 7430 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹))))) |
6 | cdlemk5.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
7 | cdlemk5.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
8 | cdlemk5.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
9 | cdlemk5.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
10 | cdlemk5.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | cdlemk5.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | cdlemk5.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
13 | cdlemk5.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
14 | 6, 7, 8, 9, 10, 11, 12, 13 | cdlemkfid1N 40331 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) = (𝑏‘𝑃)) |
15 | 14 | 3adant1r 1175 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) = (𝑏‘𝑃)) |
16 | 5, 15 | eqtr3d 2769 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) = (𝑏‘𝑃)) |
17 | 1, 16 | eqtrid 2779 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑍 = (𝑏‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 I cid 5569 ◡ccnv 5671 ↾ cres 5674 ∘ ccom 5676 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 lecple 17231 joincjn 18294 meetcmee 18295 Atomscatm 38672 HLchlt 38759 LHypclh 39394 LTrncltrn 39511 trLctrl 39568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-riotaBAD 38362 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-undef 8272 df-map 8838 df-proset 18278 df-poset 18296 df-plt 18313 df-lub 18329 df-glb 18330 df-join 18331 df-meet 18332 df-p0 18408 df-p1 18409 df-lat 18415 df-clat 18482 df-oposet 38585 df-ol 38587 df-oml 38588 df-covers 38675 df-ats 38676 df-atl 38707 df-cvlat 38731 df-hlat 38760 df-llines 38908 df-lplanes 38909 df-lvols 38910 df-lines 38911 df-psubsp 38913 df-pmap 38914 df-padd 39206 df-lhyp 39398 df-laut 39399 df-ldil 39514 df-ltrn 39515 df-trl 39569 |
This theorem is referenced by: cdlemkfid3N 40335 |
Copyright terms: Public domain | W3C validator |