|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > climaddc2 | Structured version Visualization version GIF version | ||
| Description: Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) | 
| climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | 
| climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) | 
| climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| climaddc2.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) | 
| Ref | Expression | 
|---|---|
| climaddc2 | ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | climadd.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climadd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climadd.4 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | climaddc1.6 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | climaddc1.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 7 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) | 
| 8 | climaddc2.h | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) | |
| 9 | 7, 6, 8 | comraddd 11476 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) | 
| 10 | 1, 2, 3, 4, 5, 6, 9 | climaddc1 15672 | . 2 ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) | 
| 11 | climcl 15536 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 13 | 12, 4 | addcomd 11464 | . 2 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐶 + 𝐴)) | 
| 14 | 10, 13 | breqtrd 5168 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 + caddc 11159 ℤcz 12615 ℤ≥cuz 12879 ⇝ cli 15521 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 | 
| This theorem is referenced by: isumsplit 15877 divcnvlin 35734 | 
| Copyright terms: Public domain | W3C validator |