MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climaddc2 Structured version   Visualization version   GIF version

Theorem climaddc2 14971
Description: Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climaddc1.5 (𝜑𝐶 ∈ ℂ)
climaddc1.6 (𝜑𝐺𝑊)
climaddc1.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddc2.h ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 + (𝐹𝑘)))
Assertion
Ref Expression
climaddc2 (𝜑𝐺 ⇝ (𝐶 + 𝐴))
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climaddc2
StepHypRef Expression
1 climadd.1 . . 3 𝑍 = (ℤ𝑀)
2 climadd.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . . 3 (𝜑𝐹𝐴)
4 climaddc1.5 . . 3 (𝜑𝐶 ∈ ℂ)
5 climaddc1.6 . . 3 (𝜑𝐺𝑊)
6 climaddc1.7 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
74adantr 484 . . . 4 ((𝜑𝑘𝑍) → 𝐶 ∈ ℂ)
8 climaddc2.h . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 + (𝐹𝑘)))
97, 6, 8comraddd 10831 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + 𝐶))
101, 2, 3, 4, 5, 6, 9climaddc1 14970 . 2 (𝜑𝐺 ⇝ (𝐴 + 𝐶))
11 climcl 14835 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
123, 11syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
1312, 4addcomd 10819 . 2 (𝜑 → (𝐴 + 𝐶) = (𝐶 + 𝐴))
1410, 13breqtrd 5065 1 (𝜑𝐺 ⇝ (𝐶 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115   class class class wbr 5039  cfv 6328  (class class class)co 7130  cc 10512   + caddc 10517  cz 11959  cuz 12221  cli 14820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824
This theorem is referenced by:  isumsplit  15174  divcnvlin  32972
  Copyright terms: Public domain W3C validator