Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisum Structured version   Visualization version   GIF version

Theorem iprodefisum 35466
Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisum.1 𝑍 = (ℤ𝑀)
iprodefisum.2 (𝜑𝑀 ∈ ℤ)
iprodefisum.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
iprodefisum.4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
iprodefisum.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
iprodefisum (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iprodefisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 iprodefisum.1 . 2 𝑍 = (ℤ𝑀)
2 iprodefisum.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodefisum.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
4 iprodefisum.4 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
5 iprodefisum.5 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isumcl 15743 . . 3 (𝜑 → Σ𝑘𝑍 𝐵 ∈ ℂ)
7 efne0 16077 . . 3 𝑘𝑍 𝐵 ∈ ℂ → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
86, 7syl 17 . 2 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
9 efcn 26425 . . . . 5 exp ∈ (ℂ–cn→ℂ)
109a1i 11 . . . 4 (𝜑 → exp ∈ (ℂ–cn→ℂ))
11 fveq2 6896 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
12 eqid 2725 . . . . . . . 8 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝐹𝑗))
13 fvex 6909 . . . . . . . 8 (𝐹𝑘) ∈ V
1411, 12, 13fvmpt 7004 . . . . . . 7 (𝑘𝑍 → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
1514adantl 480 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
163, 4eqeltrd 2825 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1715, 16eqeltrd 2825 . . . . 5 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) ∈ ℂ)
181, 2, 17serf 14031 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))):𝑍⟶ℂ)
191eqcomi 2734 . . . . . . . 8 (ℤ𝑀) = 𝑍
2014, 19eleq2s 2843 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
2120adantl 480 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
222, 21seqfeq 14028 . . . . 5 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) = seq𝑀( + , 𝐹))
23 climdm 15534 . . . . . 6 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
245, 23sylib 217 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2522, 24eqbrtrd 5171 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
26 climcl 15479 . . . . 5 (seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)) → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
2724, 26syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
281, 2, 10, 18, 25, 27climcncf 24864 . . 3 (𝜑 → (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
2911cbvmptv 5262 . . . . 5 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑘𝑍 ↦ (𝐹𝑘))
3016, 29fmptd 7123 . . . 4 (𝜑 → (𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ)
311, 2, 30iprodefisumlem 35465 . . 3 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) = (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))))
321, 2, 3, 4isum 15701 . . . 4 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
3332fveq2d 6900 . . 3 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) = (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
3428, 31, 333brtr4d 5181 . 2 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘Σ𝑘𝑍 𝐵))
35 fvco3 6996 . . . 4 (((𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3630, 35sylan 578 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3715fveq2d 6900 . . 3 ((𝜑𝑘𝑍) → (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)) = (exp‘(𝐹𝑘)))
383fveq2d 6900 . . 3 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) = (exp‘𝐵))
3936, 37, 383eqtrd 2769 . 2 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘𝐵))
40 efcl 16062 . . 3 (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ)
414, 40syl 17 . 2 ((𝜑𝑘𝑍) → (exp‘𝐵) ∈ ℂ)
421, 2, 8, 34, 39, 41iprodn0 15920 1 (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cmpt 5232  dom cdm 5678  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140   + caddc 11143   · cmul 11145  cz 12591  cuz 12855  seqcseq 14002  cli 15464  Σcsu 15668  cprod 15885  expce 16041  cnccncf 24840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-prod 15886  df-ef 16047  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  iprodgam  35467
  Copyright terms: Public domain W3C validator