![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodefisum | Structured version Visualization version GIF version |
Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.) |
Ref | Expression |
---|---|
iprodefisum.1 | β’ π = (β€β₯βπ) |
iprodefisum.2 | β’ (π β π β β€) |
iprodefisum.3 | β’ ((π β§ π β π) β (πΉβπ) = π΅) |
iprodefisum.4 | β’ ((π β§ π β π) β π΅ β β) |
iprodefisum.5 | β’ (π β seqπ( + , πΉ) β dom β ) |
Ref | Expression |
---|---|
iprodefisum | β’ (π β βπ β π (expβπ΅) = (expβΞ£π β π π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodefisum.1 | . 2 β’ π = (β€β₯βπ) | |
2 | iprodefisum.2 | . 2 β’ (π β π β β€) | |
3 | iprodefisum.3 | . . . 4 β’ ((π β§ π β π) β (πΉβπ) = π΅) | |
4 | iprodefisum.4 | . . . 4 β’ ((π β§ π β π) β π΅ β β) | |
5 | iprodefisum.5 | . . . 4 β’ (π β seqπ( + , πΉ) β dom β ) | |
6 | 1, 2, 3, 4, 5 | isumcl 15711 | . . 3 β’ (π β Ξ£π β π π΅ β β) |
7 | efne0 16044 | . . 3 β’ (Ξ£π β π π΅ β β β (expβΞ£π β π π΅) β 0) | |
8 | 6, 7 | syl 17 | . 2 β’ (π β (expβΞ£π β π π΅) β 0) |
9 | efcn 26191 | . . . . 5 β’ exp β (ββcnββ) | |
10 | 9 | a1i 11 | . . . 4 β’ (π β exp β (ββcnββ)) |
11 | fveq2 6890 | . . . . . . . 8 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
12 | eqid 2730 | . . . . . . . 8 β’ (π β π β¦ (πΉβπ)) = (π β π β¦ (πΉβπ)) | |
13 | fvex 6903 | . . . . . . . 8 β’ (πΉβπ) β V | |
14 | 11, 12, 13 | fvmpt 6997 | . . . . . . 7 β’ (π β π β ((π β π β¦ (πΉβπ))βπ) = (πΉβπ)) |
15 | 14 | adantl 480 | . . . . . 6 β’ ((π β§ π β π) β ((π β π β¦ (πΉβπ))βπ) = (πΉβπ)) |
16 | 3, 4 | eqeltrd 2831 | . . . . . 6 β’ ((π β§ π β π) β (πΉβπ) β β) |
17 | 15, 16 | eqeltrd 2831 | . . . . 5 β’ ((π β§ π β π) β ((π β π β¦ (πΉβπ))βπ) β β) |
18 | 1, 2, 17 | serf 14000 | . . . 4 β’ (π β seqπ( + , (π β π β¦ (πΉβπ))):πβΆβ) |
19 | 1 | eqcomi 2739 | . . . . . . . 8 β’ (β€β₯βπ) = π |
20 | 14, 19 | eleq2s 2849 | . . . . . . 7 β’ (π β (β€β₯βπ) β ((π β π β¦ (πΉβπ))βπ) = (πΉβπ)) |
21 | 20 | adantl 480 | . . . . . 6 β’ ((π β§ π β (β€β₯βπ)) β ((π β π β¦ (πΉβπ))βπ) = (πΉβπ)) |
22 | 2, 21 | seqfeq 13997 | . . . . 5 β’ (π β seqπ( + , (π β π β¦ (πΉβπ))) = seqπ( + , πΉ)) |
23 | climdm 15502 | . . . . . 6 β’ (seqπ( + , πΉ) β dom β β seqπ( + , πΉ) β ( β βseqπ( + , πΉ))) | |
24 | 5, 23 | sylib 217 | . . . . 5 β’ (π β seqπ( + , πΉ) β ( β βseqπ( + , πΉ))) |
25 | 22, 24 | eqbrtrd 5169 | . . . 4 β’ (π β seqπ( + , (π β π β¦ (πΉβπ))) β ( β βseqπ( + , πΉ))) |
26 | climcl 15447 | . . . . 5 β’ (seqπ( + , πΉ) β ( β βseqπ( + , πΉ)) β ( β βseqπ( + , πΉ)) β β) | |
27 | 24, 26 | syl 17 | . . . 4 β’ (π β ( β βseqπ( + , πΉ)) β β) |
28 | 1, 2, 10, 18, 25, 27 | climcncf 24640 | . . 3 β’ (π β (exp β seqπ( + , (π β π β¦ (πΉβπ)))) β (expβ( β βseqπ( + , πΉ)))) |
29 | 11 | cbvmptv 5260 | . . . . 5 β’ (π β π β¦ (πΉβπ)) = (π β π β¦ (πΉβπ)) |
30 | 16, 29 | fmptd 7114 | . . . 4 β’ (π β (π β π β¦ (πΉβπ)):πβΆβ) |
31 | 1, 2, 30 | iprodefisumlem 35014 | . . 3 β’ (π β seqπ( Β· , (exp β (π β π β¦ (πΉβπ)))) = (exp β seqπ( + , (π β π β¦ (πΉβπ))))) |
32 | 1, 2, 3, 4 | isum 15669 | . . . 4 β’ (π β Ξ£π β π π΅ = ( β βseqπ( + , πΉ))) |
33 | 32 | fveq2d 6894 | . . 3 β’ (π β (expβΞ£π β π π΅) = (expβ( β βseqπ( + , πΉ)))) |
34 | 28, 31, 33 | 3brtr4d 5179 | . 2 β’ (π β seqπ( Β· , (exp β (π β π β¦ (πΉβπ)))) β (expβΞ£π β π π΅)) |
35 | fvco3 6989 | . . . 4 β’ (((π β π β¦ (πΉβπ)):πβΆβ β§ π β π) β ((exp β (π β π β¦ (πΉβπ)))βπ) = (expβ((π β π β¦ (πΉβπ))βπ))) | |
36 | 30, 35 | sylan 578 | . . 3 β’ ((π β§ π β π) β ((exp β (π β π β¦ (πΉβπ)))βπ) = (expβ((π β π β¦ (πΉβπ))βπ))) |
37 | 15 | fveq2d 6894 | . . 3 β’ ((π β§ π β π) β (expβ((π β π β¦ (πΉβπ))βπ)) = (expβ(πΉβπ))) |
38 | 3 | fveq2d 6894 | . . 3 β’ ((π β§ π β π) β (expβ(πΉβπ)) = (expβπ΅)) |
39 | 36, 37, 38 | 3eqtrd 2774 | . 2 β’ ((π β§ π β π) β ((exp β (π β π β¦ (πΉβπ)))βπ) = (expβπ΅)) |
40 | efcl 16030 | . . 3 β’ (π΅ β β β (expβπ΅) β β) | |
41 | 4, 40 | syl 17 | . 2 β’ ((π β§ π β π) β (expβπ΅) β β) |
42 | 1, 2, 8, 34, 39, 41 | iprodn0 15888 | 1 β’ (π β βπ β π (expβπ΅) = (expβΞ£π β π π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5147 β¦ cmpt 5230 dom cdm 5675 β ccom 5679 βΆwf 6538 βcfv 6542 (class class class)co 7411 βcc 11110 0cc0 11112 + caddc 11115 Β· cmul 11117 β€cz 12562 β€β₯cuz 12826 seqcseq 13970 β cli 15432 Ξ£csu 15636 βcprod 15853 expce 16009 βcnβccncf 24616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-prod 15854 df-ef 16015 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 df-limc 25615 df-dv 25616 |
This theorem is referenced by: iprodgam 35016 |
Copyright terms: Public domain | W3C validator |