Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisum Structured version   Visualization version   GIF version

Theorem iprodefisum 35728
Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisum.1 𝑍 = (ℤ𝑀)
iprodefisum.2 (𝜑𝑀 ∈ ℤ)
iprodefisum.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
iprodefisum.4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
iprodefisum.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
iprodefisum (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iprodefisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 iprodefisum.1 . 2 𝑍 = (ℤ𝑀)
2 iprodefisum.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodefisum.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
4 iprodefisum.4 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
5 iprodefisum.5 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isumcl 15727 . . 3 (𝜑 → Σ𝑘𝑍 𝐵 ∈ ℂ)
7 efne0 16064 . . 3 𝑘𝑍 𝐵 ∈ ℂ → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
86, 7syl 17 . 2 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
9 efcn 26353 . . . . 5 exp ∈ (ℂ–cn→ℂ)
109a1i 11 . . . 4 (𝜑 → exp ∈ (ℂ–cn→ℂ))
11 fveq2 6858 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
12 eqid 2729 . . . . . . . 8 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝐹𝑗))
13 fvex 6871 . . . . . . . 8 (𝐹𝑘) ∈ V
1411, 12, 13fvmpt 6968 . . . . . . 7 (𝑘𝑍 → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
1514adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
163, 4eqeltrd 2828 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1715, 16eqeltrd 2828 . . . . 5 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) ∈ ℂ)
181, 2, 17serf 13995 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))):𝑍⟶ℂ)
191eqcomi 2738 . . . . . . . 8 (ℤ𝑀) = 𝑍
2014, 19eleq2s 2846 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
2120adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
222, 21seqfeq 13992 . . . . 5 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) = seq𝑀( + , 𝐹))
23 climdm 15520 . . . . . 6 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
245, 23sylib 218 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2522, 24eqbrtrd 5129 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
26 climcl 15465 . . . . 5 (seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)) → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
2724, 26syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
281, 2, 10, 18, 25, 27climcncf 24793 . . 3 (𝜑 → (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
2911cbvmptv 5211 . . . . 5 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑘𝑍 ↦ (𝐹𝑘))
3016, 29fmptd 7086 . . . 4 (𝜑 → (𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ)
311, 2, 30iprodefisumlem 35727 . . 3 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) = (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))))
321, 2, 3, 4isum 15685 . . . 4 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
3332fveq2d 6862 . . 3 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) = (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
3428, 31, 333brtr4d 5139 . 2 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘Σ𝑘𝑍 𝐵))
35 fvco3 6960 . . . 4 (((𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3630, 35sylan 580 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3715fveq2d 6862 . . 3 ((𝜑𝑘𝑍) → (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)) = (exp‘(𝐹𝑘)))
383fveq2d 6862 . . 3 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) = (exp‘𝐵))
3936, 37, 383eqtrd 2768 . 2 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘𝐵))
40 efcl 16048 . . 3 (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ)
414, 40syl 17 . 2 ((𝜑𝑘𝑍) → (exp‘𝐵) ∈ ℂ)
421, 2, 8, 34, 39, 41iprodn0 15906 1 (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cmpt 5188  dom cdm 5638  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068   + caddc 11071   · cmul 11073  cz 12529  cuz 12793  seqcseq 13966  cli 15450  Σcsu 15652  cprod 15869  expce 16027  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  iprodgam  35729
  Copyright terms: Public domain W3C validator