Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisum Structured version   Visualization version   GIF version

Theorem iprodefisum 35714
Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisum.1 𝑍 = (ℤ𝑀)
iprodefisum.2 (𝜑𝑀 ∈ ℤ)
iprodefisum.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
iprodefisum.4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
iprodefisum.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
iprodefisum (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iprodefisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 iprodefisum.1 . 2 𝑍 = (ℤ𝑀)
2 iprodefisum.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodefisum.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
4 iprodefisum.4 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
5 iprodefisum.5 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isumcl 15668 . . 3 (𝜑 → Σ𝑘𝑍 𝐵 ∈ ℂ)
7 efne0 16005 . . 3 𝑘𝑍 𝐵 ∈ ℂ → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
86, 7syl 17 . 2 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
9 efcn 26351 . . . . 5 exp ∈ (ℂ–cn→ℂ)
109a1i 11 . . . 4 (𝜑 → exp ∈ (ℂ–cn→ℂ))
11 fveq2 6822 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
12 eqid 2729 . . . . . . . 8 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝐹𝑗))
13 fvex 6835 . . . . . . . 8 (𝐹𝑘) ∈ V
1411, 12, 13fvmpt 6930 . . . . . . 7 (𝑘𝑍 → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
1514adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
163, 4eqeltrd 2828 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1715, 16eqeltrd 2828 . . . . 5 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) ∈ ℂ)
181, 2, 17serf 13937 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))):𝑍⟶ℂ)
191eqcomi 2738 . . . . . . . 8 (ℤ𝑀) = 𝑍
2014, 19eleq2s 2846 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
2120adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
222, 21seqfeq 13934 . . . . 5 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) = seq𝑀( + , 𝐹))
23 climdm 15461 . . . . . 6 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
245, 23sylib 218 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2522, 24eqbrtrd 5114 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
26 climcl 15406 . . . . 5 (seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)) → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
2724, 26syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
281, 2, 10, 18, 25, 27climcncf 24791 . . 3 (𝜑 → (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
2911cbvmptv 5196 . . . . 5 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑘𝑍 ↦ (𝐹𝑘))
3016, 29fmptd 7048 . . . 4 (𝜑 → (𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ)
311, 2, 30iprodefisumlem 35713 . . 3 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) = (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))))
321, 2, 3, 4isum 15626 . . . 4 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
3332fveq2d 6826 . . 3 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) = (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
3428, 31, 333brtr4d 5124 . 2 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘Σ𝑘𝑍 𝐵))
35 fvco3 6922 . . . 4 (((𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3630, 35sylan 580 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3715fveq2d 6826 . . 3 ((𝜑𝑘𝑍) → (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)) = (exp‘(𝐹𝑘)))
383fveq2d 6826 . . 3 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) = (exp‘𝐵))
3936, 37, 383eqtrd 2768 . 2 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘𝐵))
40 efcl 15989 . . 3 (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ)
414, 40syl 17 . 2 ((𝜑𝑘𝑍) → (exp‘𝐵) ∈ ℂ)
421, 2, 8, 34, 39, 41iprodn0 15847 1 (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cmpt 5173  dom cdm 5619  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014  cz 12471  cuz 12735  seqcseq 13908  cli 15391  Σcsu 15593  cprod 15810  expce 15968  cnccncf 24767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  iprodgam  35715
  Copyright terms: Public domain W3C validator