Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisum Structured version   Visualization version   GIF version

Theorem iprodefisum 32158
Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisum.1 𝑍 = (ℤ𝑀)
iprodefisum.2 (𝜑𝑀 ∈ ℤ)
iprodefisum.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
iprodefisum.4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
iprodefisum.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
iprodefisum (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iprodefisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 iprodefisum.1 . 2 𝑍 = (ℤ𝑀)
2 iprodefisum.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodefisum.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
4 iprodefisum.4 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
5 iprodefisum.5 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isumcl 14867 . . 3 (𝜑 → Σ𝑘𝑍 𝐵 ∈ ℂ)
7 efne0 15199 . . 3 𝑘𝑍 𝐵 ∈ ℂ → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
86, 7syl 17 . 2 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
9 efcn 24596 . . . . 5 exp ∈ (ℂ–cn→ℂ)
109a1i 11 . . . 4 (𝜑 → exp ∈ (ℂ–cn→ℂ))
11 fveq2 6433 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
12 eqid 2825 . . . . . . . 8 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝐹𝑗))
13 fvex 6446 . . . . . . . 8 (𝐹𝑘) ∈ V
1411, 12, 13fvmpt 6529 . . . . . . 7 (𝑘𝑍 → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
1514adantl 475 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
163, 4eqeltrd 2906 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1715, 16eqeltrd 2906 . . . . 5 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) ∈ ℂ)
181, 2, 17serf 13123 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))):𝑍⟶ℂ)
191eqcomi 2834 . . . . . . . 8 (ℤ𝑀) = 𝑍
2014, 19eleq2s 2924 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
2120adantl 475 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
222, 21seqfeq 13120 . . . . 5 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) = seq𝑀( + , 𝐹))
23 climdm 14662 . . . . . 6 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
245, 23sylib 210 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2522, 24eqbrtrd 4895 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
26 climcl 14607 . . . . 5 (seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)) → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
2724, 26syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
281, 2, 10, 18, 25, 27climcncf 23073 . . 3 (𝜑 → (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
2911cbvmptv 4973 . . . . 5 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑘𝑍 ↦ (𝐹𝑘))
3016, 29fmptd 6633 . . . 4 (𝜑 → (𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ)
311, 2, 30iprodefisumlem 32157 . . 3 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) = (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))))
321, 2, 3, 4isum 14827 . . . 4 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
3332fveq2d 6437 . . 3 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) = (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
3428, 31, 333brtr4d 4905 . 2 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘Σ𝑘𝑍 𝐵))
35 fvco3 6522 . . . 4 (((𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3630, 35sylan 575 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3715fveq2d 6437 . . 3 ((𝜑𝑘𝑍) → (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)) = (exp‘(𝐹𝑘)))
383fveq2d 6437 . . 3 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) = (exp‘𝐵))
3936, 37, 383eqtrd 2865 . 2 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘𝐵))
40 efcl 15185 . . 3 (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ)
414, 40syl 17 . 2 ((𝜑𝑘𝑍) → (exp‘𝐵) ∈ ℂ)
421, 2, 8, 34, 39, 41iprodn0 15043 1 (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4873  cmpt 4952  dom cdm 5342  ccom 5346  wf 6119  cfv 6123  (class class class)co 6905  cc 10250  0cc0 10252   + caddc 10255   · cmul 10257  cz 11704  cuz 11968  seqcseq 13095  cli 14592  Σcsu 14793  cprod 15008  expce 15164  cnccncf 23049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-prod 15009  df-ef 15170  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030
This theorem is referenced by:  iprodgam  32159
  Copyright terms: Public domain W3C validator