Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisum Structured version   Visualization version   GIF version

Theorem iprodefisum 33222
 Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisum.1 𝑍 = (ℤ𝑀)
iprodefisum.2 (𝜑𝑀 ∈ ℤ)
iprodefisum.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
iprodefisum.4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
iprodefisum.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
iprodefisum (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iprodefisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 iprodefisum.1 . 2 𝑍 = (ℤ𝑀)
2 iprodefisum.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iprodefisum.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
4 iprodefisum.4 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
5 iprodefisum.5 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isumcl 15164 . . 3 (𝜑 → Σ𝑘𝑍 𝐵 ∈ ℂ)
7 efne0 15498 . . 3 𝑘𝑍 𝐵 ∈ ℂ → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
86, 7syl 17 . 2 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) ≠ 0)
9 efcn 25137 . . . . 5 exp ∈ (ℂ–cn→ℂ)
109a1i 11 . . . 4 (𝜑 → exp ∈ (ℂ–cn→ℂ))
11 fveq2 6658 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
12 eqid 2758 . . . . . . . 8 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝐹𝑗))
13 fvex 6671 . . . . . . . 8 (𝐹𝑘) ∈ V
1411, 12, 13fvmpt 6759 . . . . . . 7 (𝑘𝑍 → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
1514adantl 485 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
163, 4eqeltrd 2852 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1715, 16eqeltrd 2852 . . . . 5 ((𝜑𝑘𝑍) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) ∈ ℂ)
181, 2, 17serf 13448 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))):𝑍⟶ℂ)
191eqcomi 2767 . . . . . . . 8 (ℤ𝑀) = 𝑍
2014, 19eleq2s 2870 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
2120adantl 485 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘) = (𝐹𝑘))
222, 21seqfeq 13445 . . . . 5 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) = seq𝑀( + , 𝐹))
23 climdm 14959 . . . . . 6 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
245, 23sylib 221 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2522, 24eqbrtrd 5054 . . . 4 (𝜑 → seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗))) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
26 climcl 14904 . . . . 5 (seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)) → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
2724, 26syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ)
281, 2, 10, 18, 25, 27climcncf 23601 . . 3 (𝜑 → (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
2911cbvmptv 5135 . . . . 5 (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑘𝑍 ↦ (𝐹𝑘))
3016, 29fmptd 6869 . . . 4 (𝜑 → (𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ)
311, 2, 30iprodefisumlem 33221 . . 3 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) = (exp ∘ seq𝑀( + , (𝑗𝑍 ↦ (𝐹𝑗)))))
321, 2, 3, 4isum 15124 . . . 4 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
3332fveq2d 6662 . . 3 (𝜑 → (exp‘Σ𝑘𝑍 𝐵) = (exp‘( ⇝ ‘seq𝑀( + , 𝐹))))
3428, 31, 333brtr4d 5064 . 2 (𝜑 → seq𝑀( · , (exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))) ⇝ (exp‘Σ𝑘𝑍 𝐵))
35 fvco3 6751 . . . 4 (((𝑗𝑍 ↦ (𝐹𝑗)):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3630, 35sylan 583 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)))
3715fveq2d 6662 . . 3 ((𝜑𝑘𝑍) → (exp‘((𝑗𝑍 ↦ (𝐹𝑗))‘𝑘)) = (exp‘(𝐹𝑘)))
383fveq2d 6662 . . 3 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) = (exp‘𝐵))
3936, 37, 383eqtrd 2797 . 2 ((𝜑𝑘𝑍) → ((exp ∘ (𝑗𝑍 ↦ (𝐹𝑗)))‘𝑘) = (exp‘𝐵))
40 efcl 15484 . . 3 (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ)
414, 40syl 17 . 2 ((𝜑𝑘𝑍) → (exp‘𝐵) ∈ ℂ)
421, 2, 8, 34, 39, 41iprodn0 15342 1 (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   class class class wbr 5032   ↦ cmpt 5112  dom cdm 5524   ∘ ccom 5528  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  0cc0 10575   + caddc 10578   · cmul 10580  ℤcz 12020  ℤ≥cuz 12282  seqcseq 13418   ⇝ cli 14889  Σcsu 15090  ∏cprod 15307  expce 15463  –cn→ccncf 23577 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-prod 15308  df-ef 15469  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566 This theorem is referenced by:  iprodgam  33223
 Copyright terms: Public domain W3C validator