| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iprodefisum | Structured version Visualization version GIF version | ||
| Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| iprodefisum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iprodefisum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iprodefisum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| iprodefisum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| iprodefisum.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| iprodefisum | ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (exp‘𝐵) = (exp‘Σ𝑘 ∈ 𝑍 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iprodefisum.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | iprodefisum.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | iprodefisum.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 4 | iprodefisum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
| 5 | iprodefisum.5 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 6 | 1, 2, 3, 4, 5 | isumcl 15727 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 ∈ ℂ) |
| 7 | efne0 16064 | . . 3 ⊢ (Σ𝑘 ∈ 𝑍 𝐵 ∈ ℂ → (exp‘Σ𝑘 ∈ 𝑍 𝐵) ≠ 0) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝑍 𝐵) ≠ 0) |
| 9 | efcn 26353 | . . . . 5 ⊢ exp ∈ (ℂ–cn→ℂ) | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → exp ∈ (ℂ–cn→ℂ)) |
| 11 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) | |
| 13 | fvex 6871 | . . . . . . . 8 ⊢ (𝐹‘𝑘) ∈ V | |
| 14 | 11, 12, 13 | fvmpt 6968 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
| 16 | 3, 4 | eqeltrd 2828 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 17 | 15, 16 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘) ∈ ℂ) |
| 18 | 1, 2, 17 | serf 13995 | . . . 4 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))):𝑍⟶ℂ) |
| 19 | 1 | eqcomi 2738 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) = 𝑍 |
| 20 | 14, 19 | eleq2s 2846 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
| 22 | 2, 21 | seqfeq 13992 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))) = seq𝑀( + , 𝐹)) |
| 23 | climdm 15520 | . . . . . 6 ⊢ (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) | |
| 24 | 5, 23 | sylib 218 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) |
| 25 | 22, 24 | eqbrtrd 5129 | . . . 4 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) |
| 26 | climcl 15465 | . . . . 5 ⊢ (seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)) → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ) | |
| 27 | 24, 26 | syl 17 | . . . 4 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ∈ ℂ) |
| 28 | 1, 2, 10, 18, 25, 27 | climcncf 24793 | . . 3 ⊢ (𝜑 → (exp ∘ seq𝑀( + , (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)))) ⇝ (exp‘( ⇝ ‘seq𝑀( + , 𝐹)))) |
| 29 | 11 | cbvmptv 5211 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
| 30 | 16, 29 | fmptd 7086 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)):𝑍⟶ℂ) |
| 31 | 1, 2, 30 | iprodefisumlem 35727 | . . 3 ⊢ (𝜑 → seq𝑀( · , (exp ∘ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)))) = (exp ∘ seq𝑀( + , (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))))) |
| 32 | 1, 2, 3, 4 | isum 15685 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| 33 | 32 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝑍 𝐵) = (exp‘( ⇝ ‘seq𝑀( + , 𝐹)))) |
| 34 | 28, 31, 33 | 3brtr4d 5139 | . 2 ⊢ (𝜑 → seq𝑀( · , (exp ∘ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)))) ⇝ (exp‘Σ𝑘 ∈ 𝑍 𝐵)) |
| 35 | fvco3 6960 | . . . 4 ⊢ (((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)):𝑍⟶ℂ ∧ 𝑘 ∈ 𝑍) → ((exp ∘ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)))‘𝑘) = (exp‘((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘))) | |
| 36 | 30, 35 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)))‘𝑘) = (exp‘((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘))) |
| 37 | 15 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘((𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))‘𝑘)) = (exp‘(𝐹‘𝑘))) |
| 38 | 3 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘(𝐹‘𝑘)) = (exp‘𝐵)) |
| 39 | 36, 37, 38 | 3eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((exp ∘ (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)))‘𝑘) = (exp‘𝐵)) |
| 40 | efcl 16048 | . . 3 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ) | |
| 41 | 4, 40 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘𝐵) ∈ ℂ) |
| 42 | 1, 2, 8, 34, 39, 41 | iprodn0 15906 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (exp‘𝐵) = (exp‘Σ𝑘 ∈ 𝑍 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 + caddc 11071 · cmul 11073 ℤcz 12529 ℤ≥cuz 12793 seqcseq 13966 ⇝ cli 15450 Σcsu 15652 ∏cprod 15869 expce 16027 –cn→ccncf 24769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-ef 16033 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: iprodgam 35729 |
| Copyright terms: Public domain | W3C validator |