![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climneg | Structured version Visualization version GIF version |
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climneg.1 | ⊢ Ⅎ𝑘𝜑 |
climneg.2 | ⊢ Ⅎ𝑘𝐹 |
climneg.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climneg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climneg.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climneg.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
Ref | Expression |
---|---|
climneg | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climneg.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfmpt1 5250 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -1) | |
3 | climneg.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
4 | nfmpt1 5250 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
5 | climneg.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climneg.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | 5 | fvexi 6893 | . . . . . 6 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7210 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ -1) ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ∈ V) |
10 | 1cnd 11193 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
11 | 10 | negcld 11542 | . . . 4 ⊢ (𝜑 → -1 ∈ ℂ) |
12 | eqidd 2733 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1)) | |
13 | eqidd 2733 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 = 𝑗) → -1 = -1) | |
14 | id 22 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
15 | 1cnd 11193 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → 1 ∈ ℂ) | |
16 | 15 | negcld 11542 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → -1 ∈ ℂ) |
17 | 12, 13, 14, 16 | fvmptd 6992 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
18 | 17 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
19 | 5, 6, 9, 11, 18 | climconst 15471 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ⇝ -1) |
20 | 7 | mptex 7210 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V) |
22 | climneg.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
23 | neg1cn 12310 | . . . . . 6 ⊢ -1 ∈ ℂ | |
24 | eqid 2732 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1) | |
25 | 24 | fvmpt2 6996 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ -1 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
26 | 23, 25 | mpan2 689 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
27 | 26, 23 | eqeltrdi 2841 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
28 | 27 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
29 | climneg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
30 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
31 | 29 | negcld 11542 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℂ) |
32 | eqid 2732 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
33 | 32 | fvmpt2 6996 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ -(𝐹‘𝑘) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
34 | 30, 31, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
35 | 29 | mulm1d 11650 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = -(𝐹‘𝑘)) |
36 | 26 | eqcomd 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
37 | 36 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
38 | 37 | oveq1d 7409 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
39 | 34, 35, 38 | 3eqtr2d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
40 | 1, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39 | climmulf 44157 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (-1 · 𝐴)) |
41 | climcl 15427 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
42 | 22, 41 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
43 | 42 | mulm1d 11650 | . 2 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
44 | 40, 43 | breqtrd 5168 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 Vcvv 3474 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6533 (class class class)co 7394 ℂcc 11092 1c1 11095 · cmul 11099 -cneg 11429 ℤcz 12542 ℤ≥cuz 12806 ⇝ cli 15412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-sup 9421 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 df-nn 12197 df-2 12259 df-3 12260 df-n0 12457 df-z 12543 df-uz 12807 df-rp 12959 df-seq 13951 df-exp 14012 df-cj 15030 df-re 15031 df-im 15032 df-sqrt 15166 df-abs 15167 df-clim 15416 |
This theorem is referenced by: climliminflimsupd 44354 |
Copyright terms: Public domain | W3C validator |