| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climneg | Structured version Visualization version GIF version | ||
| Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climneg.1 | ⊢ Ⅎ𝑘𝜑 |
| climneg.2 | ⊢ Ⅎ𝑘𝐹 |
| climneg.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climneg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climneg.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climneg.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| Ref | Expression |
|---|---|
| climneg | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climneg.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfmpt1 5225 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -1) | |
| 3 | climneg.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
| 4 | nfmpt1 5225 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
| 5 | climneg.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | climneg.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 5 | fvexi 6895 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 8 | 7 | mptex 7220 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ -1) ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ∈ V) |
| 10 | 1cnd 11235 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 11 | 10 | negcld 11586 | . . . 4 ⊢ (𝜑 → -1 ∈ ℂ) |
| 12 | eqidd 2737 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1)) | |
| 13 | eqidd 2737 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 = 𝑗) → -1 = -1) | |
| 14 | id 22 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
| 15 | 1cnd 11235 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → 1 ∈ ℂ) | |
| 16 | 15 | negcld 11586 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → -1 ∈ ℂ) |
| 17 | 12, 13, 14, 16 | fvmptd 6998 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
| 19 | 5, 6, 9, 11, 18 | climconst 15564 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ⇝ -1) |
| 20 | 7 | mptex 7220 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V) |
| 22 | climneg.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 23 | neg1cn 12359 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 24 | eqid 2736 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1) | |
| 25 | 24 | fvmpt2 7002 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ -1 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
| 26 | 23, 25 | mpan2 691 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
| 27 | 26, 23 | eqeltrdi 2843 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
| 29 | climneg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 30 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 31 | 29 | negcld 11586 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℂ) |
| 32 | eqid 2736 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
| 33 | 32 | fvmpt2 7002 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ -(𝐹‘𝑘) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
| 34 | 30, 31, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
| 35 | 29 | mulm1d 11694 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = -(𝐹‘𝑘)) |
| 36 | 26 | eqcomd 2742 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
| 37 | 36 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
| 38 | 37 | oveq1d 7425 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
| 39 | 34, 35, 38 | 3eqtr2d 2777 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
| 40 | 1, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39 | climmulf 45600 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (-1 · 𝐴)) |
| 41 | climcl 15520 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 42 | 22, 41 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 43 | 42 | mulm1d 11694 | . 2 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| 44 | 40, 43 | breqtrd 5150 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 Vcvv 3464 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 1c1 11135 · cmul 11139 -cneg 11472 ℤcz 12593 ℤ≥cuz 12857 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 |
| This theorem is referenced by: climliminflimsupd 45797 |
| Copyright terms: Public domain | W3C validator |