Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climneg Structured version   Visualization version   GIF version

Theorem climneg 43041
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climneg.1 𝑘𝜑
climneg.2 𝑘𝐹
climneg.3 𝑍 = (ℤ𝑀)
climneg.4 (𝜑𝑀 ∈ ℤ)
climneg.5 (𝜑𝐹𝐴)
climneg.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
climneg (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem climneg
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climneg.1 . . 3 𝑘𝜑
2 nfmpt1 5178 . . 3 𝑘(𝑘𝑍 ↦ -1)
3 climneg.2 . . 3 𝑘𝐹
4 nfmpt1 5178 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
5 climneg.3 . . 3 𝑍 = (ℤ𝑀)
6 climneg.4 . . 3 (𝜑𝑀 ∈ ℤ)
75fvexi 6770 . . . . . 6 𝑍 ∈ V
87mptex 7081 . . . . 5 (𝑘𝑍 ↦ -1) ∈ V
98a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ -1) ∈ V)
10 1cnd 10901 . . . . 5 (𝜑 → 1 ∈ ℂ)
1110negcld 11249 . . . 4 (𝜑 → -1 ∈ ℂ)
12 eqidd 2739 . . . . . 6 (𝑗𝑍 → (𝑘𝑍 ↦ -1) = (𝑘𝑍 ↦ -1))
13 eqidd 2739 . . . . . 6 ((𝑗𝑍𝑘 = 𝑗) → -1 = -1)
14 id 22 . . . . . 6 (𝑗𝑍𝑗𝑍)
15 1cnd 10901 . . . . . . 7 (𝑗𝑍 → 1 ∈ ℂ)
1615negcld 11249 . . . . . 6 (𝑗𝑍 → -1 ∈ ℂ)
1712, 13, 14, 16fvmptd 6864 . . . . 5 (𝑗𝑍 → ((𝑘𝑍 ↦ -1)‘𝑗) = -1)
1817adantl 481 . . . 4 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ -1)‘𝑗) = -1)
195, 6, 9, 11, 18climconst 15180 . . 3 (𝜑 → (𝑘𝑍 ↦ -1) ⇝ -1)
207mptex 7081 . . . 4 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
2120a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V)
22 climneg.5 . . 3 (𝜑𝐹𝐴)
23 neg1cn 12017 . . . . . 6 -1 ∈ ℂ
24 eqid 2738 . . . . . . 7 (𝑘𝑍 ↦ -1) = (𝑘𝑍 ↦ -1)
2524fvmpt2 6868 . . . . . 6 ((𝑘𝑍 ∧ -1 ∈ ℂ) → ((𝑘𝑍 ↦ -1)‘𝑘) = -1)
2623, 25mpan2 687 . . . . 5 (𝑘𝑍 → ((𝑘𝑍 ↦ -1)‘𝑘) = -1)
2726, 23eqeltrdi 2847 . . . 4 (𝑘𝑍 → ((𝑘𝑍 ↦ -1)‘𝑘) ∈ ℂ)
2827adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -1)‘𝑘) ∈ ℂ)
29 climneg.6 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 simpr 484 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
3129negcld 11249 . . . . 5 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℂ)
32 eqid 2738 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) = (𝑘𝑍 ↦ -(𝐹𝑘))
3332fvmpt2 6868 . . . . 5 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ ℂ) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
3430, 31, 33syl2anc 583 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
3529mulm1d 11357 . . . 4 ((𝜑𝑘𝑍) → (-1 · (𝐹𝑘)) = -(𝐹𝑘))
3626eqcomd 2744 . . . . . 6 (𝑘𝑍 → -1 = ((𝑘𝑍 ↦ -1)‘𝑘))
3736adantl 481 . . . . 5 ((𝜑𝑘𝑍) → -1 = ((𝑘𝑍 ↦ -1)‘𝑘))
3837oveq1d 7270 . . . 4 ((𝜑𝑘𝑍) → (-1 · (𝐹𝑘)) = (((𝑘𝑍 ↦ -1)‘𝑘) · (𝐹𝑘)))
3934, 35, 383eqtr2d 2784 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = (((𝑘𝑍 ↦ -1)‘𝑘) · (𝐹𝑘)))
401, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39climmulf 43035 . 2 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (-1 · 𝐴))
41 climcl 15136 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
4222, 41syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
4342mulm1d 11357 . 2 (𝜑 → (-1 · 𝐴) = -𝐴)
4440, 43breqtrd 5096 1 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  Vcvv 3422   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   · cmul 10807  -cneg 11136  cz 12249  cuz 12511  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125
This theorem is referenced by:  climliminflimsupd  43232
  Copyright terms: Public domain W3C validator