Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climneg | Structured version Visualization version GIF version |
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climneg.1 | ⊢ Ⅎ𝑘𝜑 |
climneg.2 | ⊢ Ⅎ𝑘𝐹 |
climneg.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climneg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climneg.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climneg.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
Ref | Expression |
---|---|
climneg | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climneg.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfmpt1 5182 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -1) | |
3 | climneg.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
4 | nfmpt1 5182 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
5 | climneg.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climneg.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | 5 | fvexi 6788 | . . . . . 6 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7099 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ -1) ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ∈ V) |
10 | 1cnd 10970 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
11 | 10 | negcld 11319 | . . . 4 ⊢ (𝜑 → -1 ∈ ℂ) |
12 | eqidd 2739 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1)) | |
13 | eqidd 2739 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 = 𝑗) → -1 = -1) | |
14 | id 22 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
15 | 1cnd 10970 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → 1 ∈ ℂ) | |
16 | 15 | negcld 11319 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → -1 ∈ ℂ) |
17 | 12, 13, 14, 16 | fvmptd 6882 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
18 | 17 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
19 | 5, 6, 9, 11, 18 | climconst 15252 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ⇝ -1) |
20 | 7 | mptex 7099 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V) |
22 | climneg.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
23 | neg1cn 12087 | . . . . . 6 ⊢ -1 ∈ ℂ | |
24 | eqid 2738 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1) | |
25 | 24 | fvmpt2 6886 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ -1 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
26 | 23, 25 | mpan2 688 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
27 | 26, 23 | eqeltrdi 2847 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
28 | 27 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
29 | climneg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
30 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
31 | 29 | negcld 11319 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℂ) |
32 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
33 | 32 | fvmpt2 6886 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ -(𝐹‘𝑘) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
34 | 30, 31, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
35 | 29 | mulm1d 11427 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = -(𝐹‘𝑘)) |
36 | 26 | eqcomd 2744 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
37 | 36 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
38 | 37 | oveq1d 7290 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
39 | 34, 35, 38 | 3eqtr2d 2784 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
40 | 1, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39 | climmulf 43145 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (-1 · 𝐴)) |
41 | climcl 15208 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
42 | 22, 41 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
43 | 42 | mulm1d 11427 | . 2 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
44 | 40, 43 | breqtrd 5100 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 · cmul 10876 -cneg 11206 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 |
This theorem is referenced by: climliminflimsupd 43342 |
Copyright terms: Public domain | W3C validator |