Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climneg Structured version   Visualization version   GIF version

Theorem climneg 45531
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climneg.1 𝑘𝜑
climneg.2 𝑘𝐹
climneg.3 𝑍 = (ℤ𝑀)
climneg.4 (𝜑𝑀 ∈ ℤ)
climneg.5 (𝜑𝐹𝐴)
climneg.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
climneg (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem climneg
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climneg.1 . . 3 𝑘𝜑
2 nfmpt1 5274 . . 3 𝑘(𝑘𝑍 ↦ -1)
3 climneg.2 . . 3 𝑘𝐹
4 nfmpt1 5274 . . 3 𝑘(𝑘𝑍 ↦ -(𝐹𝑘))
5 climneg.3 . . 3 𝑍 = (ℤ𝑀)
6 climneg.4 . . 3 (𝜑𝑀 ∈ ℤ)
75fvexi 6934 . . . . . 6 𝑍 ∈ V
87mptex 7260 . . . . 5 (𝑘𝑍 ↦ -1) ∈ V
98a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ -1) ∈ V)
10 1cnd 11285 . . . . 5 (𝜑 → 1 ∈ ℂ)
1110negcld 11634 . . . 4 (𝜑 → -1 ∈ ℂ)
12 eqidd 2741 . . . . . 6 (𝑗𝑍 → (𝑘𝑍 ↦ -1) = (𝑘𝑍 ↦ -1))
13 eqidd 2741 . . . . . 6 ((𝑗𝑍𝑘 = 𝑗) → -1 = -1)
14 id 22 . . . . . 6 (𝑗𝑍𝑗𝑍)
15 1cnd 11285 . . . . . . 7 (𝑗𝑍 → 1 ∈ ℂ)
1615negcld 11634 . . . . . 6 (𝑗𝑍 → -1 ∈ ℂ)
1712, 13, 14, 16fvmptd 7036 . . . . 5 (𝑗𝑍 → ((𝑘𝑍 ↦ -1)‘𝑗) = -1)
1817adantl 481 . . . 4 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ -1)‘𝑗) = -1)
195, 6, 9, 11, 18climconst 15589 . . 3 (𝜑 → (𝑘𝑍 ↦ -1) ⇝ -1)
207mptex 7260 . . . 4 (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V
2120a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ V)
22 climneg.5 . . 3 (𝜑𝐹𝐴)
23 neg1cn 12407 . . . . . 6 -1 ∈ ℂ
24 eqid 2740 . . . . . . 7 (𝑘𝑍 ↦ -1) = (𝑘𝑍 ↦ -1)
2524fvmpt2 7040 . . . . . 6 ((𝑘𝑍 ∧ -1 ∈ ℂ) → ((𝑘𝑍 ↦ -1)‘𝑘) = -1)
2623, 25mpan2 690 . . . . 5 (𝑘𝑍 → ((𝑘𝑍 ↦ -1)‘𝑘) = -1)
2726, 23eqeltrdi 2852 . . . 4 (𝑘𝑍 → ((𝑘𝑍 ↦ -1)‘𝑘) ∈ ℂ)
2827adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -1)‘𝑘) ∈ ℂ)
29 climneg.6 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 simpr 484 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
3129negcld 11634 . . . . 5 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℂ)
32 eqid 2740 . . . . . 6 (𝑘𝑍 ↦ -(𝐹𝑘)) = (𝑘𝑍 ↦ -(𝐹𝑘))
3332fvmpt2 7040 . . . . 5 ((𝑘𝑍 ∧ -(𝐹𝑘) ∈ ℂ) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
3430, 31, 33syl2anc 583 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = -(𝐹𝑘))
3529mulm1d 11742 . . . 4 ((𝜑𝑘𝑍) → (-1 · (𝐹𝑘)) = -(𝐹𝑘))
3626eqcomd 2746 . . . . . 6 (𝑘𝑍 → -1 = ((𝑘𝑍 ↦ -1)‘𝑘))
3736adantl 481 . . . . 5 ((𝜑𝑘𝑍) → -1 = ((𝑘𝑍 ↦ -1)‘𝑘))
3837oveq1d 7463 . . . 4 ((𝜑𝑘𝑍) → (-1 · (𝐹𝑘)) = (((𝑘𝑍 ↦ -1)‘𝑘) · (𝐹𝑘)))
3934, 35, 383eqtr2d 2786 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ -(𝐹𝑘))‘𝑘) = (((𝑘𝑍 ↦ -1)‘𝑘) · (𝐹𝑘)))
401, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39climmulf 45525 . 2 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (-1 · 𝐴))
41 climcl 15545 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
4222, 41syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
4342mulm1d 11742 . 2 (𝜑 → (-1 · 𝐴) = -𝐴)
4440, 43breqtrd 5192 1 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  Vcvv 3488   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   · cmul 11189  -cneg 11521  cz 12639  cuz 12903  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  climliminflimsupd  45722
  Copyright terms: Public domain W3C validator