| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climneg | Structured version Visualization version GIF version | ||
| Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climneg.1 | ⊢ Ⅎ𝑘𝜑 |
| climneg.2 | ⊢ Ⅎ𝑘𝐹 |
| climneg.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climneg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climneg.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climneg.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| Ref | Expression |
|---|---|
| climneg | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climneg.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfmpt1 5206 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -1) | |
| 3 | climneg.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
| 4 | nfmpt1 5206 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
| 5 | climneg.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | climneg.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 5 | fvexi 6872 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 8 | 7 | mptex 7197 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ -1) ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ∈ V) |
| 10 | 1cnd 11169 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 11 | 10 | negcld 11520 | . . . 4 ⊢ (𝜑 → -1 ∈ ℂ) |
| 12 | eqidd 2730 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1)) | |
| 13 | eqidd 2730 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 = 𝑗) → -1 = -1) | |
| 14 | id 22 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
| 15 | 1cnd 11169 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → 1 ∈ ℂ) | |
| 16 | 15 | negcld 11520 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → -1 ∈ ℂ) |
| 17 | 12, 13, 14, 16 | fvmptd 6975 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
| 19 | 5, 6, 9, 11, 18 | climconst 15509 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ⇝ -1) |
| 20 | 7 | mptex 7197 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V) |
| 22 | climneg.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 23 | neg1cn 12171 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1) | |
| 25 | 24 | fvmpt2 6979 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ -1 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
| 26 | 23, 25 | mpan2 691 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
| 27 | 26, 23 | eqeltrdi 2836 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
| 29 | climneg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 30 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 31 | 29 | negcld 11520 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℂ) |
| 32 | eqid 2729 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
| 33 | 32 | fvmpt2 6979 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ -(𝐹‘𝑘) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
| 34 | 30, 31, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
| 35 | 29 | mulm1d 11630 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = -(𝐹‘𝑘)) |
| 36 | 26 | eqcomd 2735 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
| 37 | 36 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
| 38 | 37 | oveq1d 7402 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
| 39 | 34, 35, 38 | 3eqtr2d 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
| 40 | 1, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39 | climmulf 45602 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (-1 · 𝐴)) |
| 41 | climcl 15465 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 42 | 22, 41 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 43 | 42 | mulm1d 11630 | . 2 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| 44 | 40, 43 | breqtrd 5133 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 · cmul 11073 -cneg 11406 ℤcz 12529 ℤ≥cuz 12793 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 |
| This theorem is referenced by: climliminflimsupd 45799 |
| Copyright terms: Public domain | W3C validator |