Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climneg | Structured version Visualization version GIF version |
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climneg.1 | ⊢ Ⅎ𝑘𝜑 |
climneg.2 | ⊢ Ⅎ𝑘𝐹 |
climneg.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climneg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climneg.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climneg.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
Ref | Expression |
---|---|
climneg | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climneg.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfmpt1 5153 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -1) | |
3 | climneg.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
4 | nfmpt1 5153 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
5 | climneg.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climneg.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | 5 | fvexi 6731 | . . . . . 6 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7039 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ -1) ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ∈ V) |
10 | 1cnd 10828 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
11 | 10 | negcld 11176 | . . . 4 ⊢ (𝜑 → -1 ∈ ℂ) |
12 | eqidd 2738 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1)) | |
13 | eqidd 2738 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 = 𝑗) → -1 = -1) | |
14 | id 22 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
15 | 1cnd 10828 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → 1 ∈ ℂ) | |
16 | 15 | negcld 11176 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → -1 ∈ ℂ) |
17 | 12, 13, 14, 16 | fvmptd 6825 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
18 | 17 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑗) = -1) |
19 | 5, 6, 9, 11, 18 | climconst 15104 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -1) ⇝ -1) |
20 | 7 | mptex 7039 | . . . 4 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ V) |
22 | climneg.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
23 | neg1cn 11944 | . . . . . 6 ⊢ -1 ∈ ℂ | |
24 | eqid 2737 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ -1) = (𝑘 ∈ 𝑍 ↦ -1) | |
25 | 24 | fvmpt2 6829 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑍 ∧ -1 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
26 | 23, 25 | mpan2 691 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) = -1) |
27 | 26, 23 | eqeltrdi 2846 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
28 | 27 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) ∈ ℂ) |
29 | climneg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
30 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
31 | 29 | negcld 11176 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℂ) |
32 | eqid 2737 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) | |
33 | 32 | fvmpt2 6829 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ -(𝐹‘𝑘) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
34 | 30, 31, 33 | syl2anc 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = -(𝐹‘𝑘)) |
35 | 29 | mulm1d 11284 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = -(𝐹‘𝑘)) |
36 | 26 | eqcomd 2743 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
37 | 36 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 = ((𝑘 ∈ 𝑍 ↦ -1)‘𝑘)) |
38 | 37 | oveq1d 7228 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1 · (𝐹‘𝑘)) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
39 | 34, 35, 38 | 3eqtr2d 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))‘𝑘) = (((𝑘 ∈ 𝑍 ↦ -1)‘𝑘) · (𝐹‘𝑘))) |
40 | 1, 2, 3, 4, 5, 6, 19, 21, 22, 28, 29, 39 | climmulf 42820 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (-1 · 𝐴)) |
41 | climcl 15060 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
42 | 22, 41 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
43 | 42 | mulm1d 11284 | . 2 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
44 | 40, 43 | breqtrd 5079 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2110 Ⅎwnfc 2884 Vcvv 3408 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 1c1 10730 · cmul 10734 -cneg 11063 ℤcz 12176 ℤ≥cuz 12438 ⇝ cli 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 |
This theorem is referenced by: climliminflimsupd 43017 |
Copyright terms: Public domain | W3C validator |