| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrmusumlem | Structured version Visualization version GIF version | ||
| Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
| dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
| dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
| dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
| dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
| Ref | Expression |
|---|---|
| dchrmusumlem | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 14014 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) | |
| 2 | dchrmusum.g | . . . . . . . . 9 ⊢ 𝐺 = (DChr‘𝑁) | |
| 3 | rpvmasum.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 4 | dchrmusum.d | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
| 5 | rpvmasum.l | . . . . . . . . 9 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 6 | dchrmusum.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋 ∈ 𝐷) |
| 8 | elfzelz 13564 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ) | |
| 9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
| 10 | 2, 3, 4, 5, 7, 9 | dchrzrhcl 27289 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 11 | elfznn 13593 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
| 12 | 11 | adantl 481 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
| 13 | mucl 27184 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ) | |
| 14 | 12, 13 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ) |
| 15 | 14 | zred 12722 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ) |
| 16 | 15, 12 | nndivred 12320 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ) |
| 17 | 16 | recnd 11289 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ) |
| 18 | 10, 17 | mulcld 11281 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) ∈ ℂ) |
| 19 | 1, 18 | fsumcl 15769 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) ∈ ℂ) |
| 20 | dchrmusum.t | . . . . . . . 8 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
| 21 | climcl 15535 | . . . . . . . 8 ⊢ (seq1( + , 𝐹) ⇝ 𝑇 → 𝑇 ∈ ℂ) | |
| 22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ) |
| 24 | 19, 23 | mulcld 11281 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) ∈ ℂ) |
| 25 | rpvmasum.a | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 26 | dchrmusum.1 | . . . . . . 7 ⊢ 1 = (0g‘𝐺) | |
| 27 | dchrmusum.n1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
| 28 | dchrmusum.f | . . . . . . 7 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
| 29 | dchrmusum.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
| 30 | dchrmusum.2 | . . . . . . 7 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
| 31 | 3, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30 | dchrisumn0 27565 | . . . . . 6 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ≠ 0) |
| 33 | 24, 23, 32 | divrecd 12046 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) / 𝑇) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) |
| 34 | 19, 23, 32 | divcan4d 12049 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) / 𝑇) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) |
| 35 | 33, 34 | eqtr3d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) |
| 36 | 35 | mpteq2dva 5242 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)))) |
| 37 | 22, 31 | reccld 12036 | . . . 4 ⊢ (𝜑 → (1 / 𝑇) ∈ ℂ) |
| 38 | 37 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑇) ∈ ℂ) |
| 39 | 3, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30 | dchrmusum2 27538 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇)) ∈ 𝑂(1)) |
| 40 | rpssre 13042 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
| 41 | o1const 15656 | . . . 4 ⊢ ((ℝ+ ⊆ ℝ ∧ (1 / 𝑇) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (1 / 𝑇)) ∈ 𝑂(1)) | |
| 42 | 40, 37, 41 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑇)) ∈ 𝑂(1)) |
| 43 | 24, 38, 39, 42 | o1mul2 15661 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) ∈ 𝑂(1)) |
| 44 | 36, 43 | eqeltrrd 2842 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 +∞cpnf 11292 ≤ cle 11296 − cmin 11492 / cdiv 11920 ℕcn 12266 ℤcz 12613 ℝ+crp 13034 [,)cico 13389 ...cfz 13547 ⌊cfl 13830 seqcseq 14042 abscabs 15273 ⇝ cli 15520 𝑂(1)co1 15522 Σcsu 15722 Basecbs 17247 0gc0g 17484 ℤRHomczrh 21510 ℤ/nℤczn 21513 μcmu 27138 DChrcdchr 27276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-rpss 7743 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-o1 15526 df-lo1 15527 df-sum 15723 df-ef 16103 df-e 16104 df-sin 16105 df-cos 16106 df-tan 16107 df-pi 16108 df-dvds 16291 df-gcd 16532 df-prm 16709 df-numer 16772 df-denom 16773 df-phi 16803 df-pc 16875 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-qus 17554 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-gim 19277 df-ga 19308 df-cntz 19335 df-oppg 19364 df-od 19546 df-gex 19547 df-pgp 19548 df-lsm 19654 df-pj1 19655 df-cmn 19800 df-abl 19801 df-cyg 19896 df-dprd 20015 df-dpj 20016 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-zn 21517 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-cmp 23395 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-0p 25705 df-limc 25901 df-dv 25902 df-ply 26227 df-idp 26228 df-coe 26229 df-dgr 26230 df-quot 26333 df-ulm 26420 df-log 26598 df-cxp 26599 df-atan 26910 df-em 27036 df-cht 27140 df-vma 27141 df-chp 27142 df-ppi 27143 df-mu 27144 df-dchr 27277 |
| This theorem is referenced by: dchrmusum 27568 |
| Copyright terms: Public domain | W3C validator |