Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrmusumlem | Structured version Visualization version GIF version |
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
Ref | Expression |
---|---|
dchrmusumlem | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13693 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) | |
2 | dchrmusum.g | . . . . . . . . 9 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | rpvmasum.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
4 | dchrmusum.d | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
5 | rpvmasum.l | . . . . . . . . 9 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
6 | dchrmusum.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
7 | 6 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋 ∈ 𝐷) |
8 | elfzelz 13256 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ) | |
9 | 8 | adantl 482 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
10 | 2, 3, 4, 5, 7, 9 | dchrzrhcl 26393 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
11 | elfznn 13285 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
12 | 11 | adantl 482 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
13 | mucl 26290 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ) | |
14 | 12, 13 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ) |
15 | 14 | zred 12426 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ) |
16 | 15, 12 | nndivred 12027 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ) |
17 | 16 | recnd 11003 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ) |
18 | 10, 17 | mulcld 10995 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) ∈ ℂ) |
19 | 1, 18 | fsumcl 15445 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) ∈ ℂ) |
20 | dchrmusum.t | . . . . . . . 8 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
21 | climcl 15208 | . . . . . . . 8 ⊢ (seq1( + , 𝐹) ⇝ 𝑇 → 𝑇 ∈ ℂ) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
23 | 22 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ) |
24 | 19, 23 | mulcld 10995 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) ∈ ℂ) |
25 | rpvmasum.a | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
26 | dchrmusum.1 | . . . . . . 7 ⊢ 1 = (0g‘𝐺) | |
27 | dchrmusum.n1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
28 | dchrmusum.f | . . . . . . 7 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
29 | dchrmusum.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
30 | dchrmusum.2 | . . . . . . 7 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
31 | 3, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30 | dchrisumn0 26669 | . . . . . 6 ⊢ (𝜑 → 𝑇 ≠ 0) |
32 | 31 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ≠ 0) |
33 | 24, 23, 32 | divrecd 11754 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) / 𝑇) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) |
34 | 19, 23, 32 | divcan4d 11757 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) / 𝑇) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) |
35 | 33, 34 | eqtr3d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) |
36 | 35 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)))) |
37 | 22, 31 | reccld 11744 | . . . 4 ⊢ (𝜑 → (1 / 𝑇) ∈ ℂ) |
38 | 37 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑇) ∈ ℂ) |
39 | 3, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30 | dchrmusum2 26642 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇)) ∈ 𝑂(1)) |
40 | rpssre 12737 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
41 | o1const 15329 | . . . 4 ⊢ ((ℝ+ ⊆ ℝ ∧ (1 / 𝑇) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (1 / 𝑇)) ∈ 𝑂(1)) | |
42 | 40, 37, 41 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑇)) ∈ 𝑂(1)) |
43 | 24, 38, 39, 42 | o1mul2 15334 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) ∈ 𝑂(1)) |
44 | 36, 43 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 +∞cpnf 11006 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 ℝ+crp 12730 [,)cico 13081 ...cfz 13239 ⌊cfl 13510 seqcseq 13721 abscabs 14945 ⇝ cli 15193 𝑂(1)co1 15195 Σcsu 15397 Basecbs 16912 0gc0g 17150 ℤRHomczrh 20701 ℤ/nℤczn 20704 μcmu 26244 DChrcdchr 26380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-rpss 7576 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-o1 15199 df-lo1 15200 df-sum 15398 df-ef 15777 df-e 15778 df-sin 15779 df-cos 15780 df-tan 15781 df-pi 15782 df-dvds 15964 df-gcd 16202 df-prm 16377 df-numer 16439 df-denom 16440 df-phi 16467 df-pc 16538 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-qus 17220 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-nsg 18753 df-eqg 18754 df-ghm 18832 df-gim 18875 df-ga 18896 df-cntz 18923 df-oppg 18950 df-od 19136 df-gex 19137 df-pgp 19138 df-lsm 19241 df-pj1 19242 df-cmn 19388 df-abl 19389 df-cyg 19478 df-dprd 19598 df-dpj 19599 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-sra 20434 df-rgmod 20435 df-lidl 20436 df-rsp 20437 df-2idl 20503 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-zn 20708 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-0p 24834 df-limc 25030 df-dv 25031 df-ply 25349 df-idp 25350 df-coe 25351 df-dgr 25352 df-quot 25451 df-ulm 25536 df-log 25712 df-cxp 25713 df-atan 26017 df-em 26142 df-cht 26246 df-vma 26247 df-chp 26248 df-ppi 26249 df-mu 26250 df-dchr 26381 |
This theorem is referenced by: dchrmusum 26672 |
Copyright terms: Public domain | W3C validator |