Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climdivf Structured version   Visualization version   GIF version

Theorem climdivf 45568
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climdivf.1 𝑘𝜑
climdivf.2 𝑘𝐹
climdivf.3 𝑘𝐺
climdivf.4 𝑘𝐻
climdivf.5 𝑍 = (ℤ𝑀)
climdivf.6 (𝜑𝑀 ∈ ℤ)
climdivf.7 (𝜑𝐹𝐴)
climdivf.8 (𝜑𝐻𝑋)
climdivf.9 (𝜑𝐺𝐵)
climdivf.10 (𝜑𝐵 ≠ 0)
climdivf.11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climdivf.12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climdivf.13 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
climdivf (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climdivf
StepHypRef Expression
1 climdivf.1 . . 3 𝑘𝜑
2 climdivf.2 . . 3 𝑘𝐹
3 nfmpt1 5256 . . 3 𝑘(𝑘𝑍 ↦ (1 / (𝐺𝑘)))
4 climdivf.4 . . 3 𝑘𝐻
5 climdivf.5 . . 3 𝑍 = (ℤ𝑀)
6 climdivf.6 . . 3 (𝜑𝑀 ∈ ℤ)
7 climdivf.7 . . 3 (𝜑𝐹𝐴)
8 climdivf.8 . . 3 (𝜑𝐻𝑋)
9 climdivf.3 . . . 4 𝑘𝐺
10 climdivf.9 . . . 4 (𝜑𝐺𝐵)
11 climdivf.10 . . . 4 (𝜑𝐵 ≠ 0)
12 climdivf.12 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
13 simpr 484 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
1412eldifad 3975 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
15 eldifsni 4795 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
1612, 15syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
1714, 16reccld 12034 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
18 eqid 2735 . . . . . 6 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) = (𝑘𝑍 ↦ (1 / (𝐺𝑘)))
1918fvmpt2 7027 . . . . 5 ((𝑘𝑍 ∧ (1 / (𝐺𝑘)) ∈ ℂ) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
2013, 17, 19syl2anc 584 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
215fvexi 6921 . . . . . 6 𝑍 ∈ V
2221mptex 7243 . . . . 5 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V
2322a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V)
241, 9, 3, 5, 6, 10, 11, 12, 20, 23climrecf 45565 . . 3 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ⇝ (1 / 𝐵))
25 climdivf.11 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2620, 17eqeltrd 2839 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) ∈ ℂ)
27 climdivf.13 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
2825, 14, 16divrecd 12044 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2920eqcomd 2741 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) = ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘))
3029oveq2d 7447 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (1 / (𝐺𝑘))) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
3127, 28, 303eqtrd 2779 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
321, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31climmulf 45560 . 2 (𝜑𝐻 ⇝ (𝐴 · (1 / 𝐵)))
33 climcl 15532 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
347, 33syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
35 climcl 15532 . . . 4 (𝐺𝐵𝐵 ∈ ℂ)
3610, 35syl 17 . . 3 (𝜑𝐵 ∈ ℂ)
3734, 36, 11divrecd 12044 . 2 (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
3832, 37breqtrrd 5176 1 (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wne 2938  Vcvv 3478  cdif 3960  {csn 4631   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158   / cdiv 11918  cz 12611  cuz 12876  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  stirlinglem8  46037  fourierdlem103  46165  fourierdlem104  46166
  Copyright terms: Public domain W3C validator