Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climdivf | Structured version Visualization version GIF version |
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climdivf.1 | ⊢ Ⅎ𝑘𝜑 |
climdivf.2 | ⊢ Ⅎ𝑘𝐹 |
climdivf.3 | ⊢ Ⅎ𝑘𝐺 |
climdivf.4 | ⊢ Ⅎ𝑘𝐻 |
climdivf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climdivf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climdivf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climdivf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climdivf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climdivf.10 | ⊢ (𝜑 → 𝐵 ≠ 0) |
climdivf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climdivf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climdivf.13 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climdivf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdivf.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | climdivf.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
3 | nfmpt1 5182 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
4 | climdivf.4 | . . 3 ⊢ Ⅎ𝑘𝐻 | |
5 | climdivf.5 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climdivf.6 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climdivf.7 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climdivf.8 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
9 | climdivf.3 | . . . 4 ⊢ Ⅎ𝑘𝐺 | |
10 | climdivf.9 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
11 | climdivf.10 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
12 | climdivf.12 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
13 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
14 | 12 | eldifad 3899 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
15 | eldifsni 4723 | . . . . . . 7 ⊢ ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) → (𝐺‘𝑘) ≠ 0) | |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≠ 0) |
17 | 14, 16 | reccld 11744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) ∈ ℂ) |
18 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
19 | 18 | fvmpt2 6886 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ (1 / (𝐺‘𝑘)) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
20 | 13, 17, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
21 | 5 | fvexi 6788 | . . . . . 6 ⊢ 𝑍 ∈ V |
22 | 21 | mptex 7099 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V) |
24 | 1, 9, 3, 5, 6, 10, 11, 12, 20, 23 | climrecf 43150 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ⇝ (1 / 𝐵)) |
25 | climdivf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
26 | 20, 17 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) ∈ ℂ) |
27 | climdivf.13 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) | |
28 | 25, 14, 16 | divrecd 11754 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
29 | 20 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) = ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘)) |
30 | 29 | oveq2d 7291 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) · (1 / (𝐺‘𝑘))) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
31 | 27, 28, 30 | 3eqtrd 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31 | climmulf 43145 | . 2 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · (1 / 𝐵))) |
33 | climcl 15208 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
34 | 7, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
35 | climcl 15208 | . . . 4 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
36 | 10, 35 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
37 | 34, 36, 11 | divrecd 11754 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
38 | 32, 37 | breqtrrd 5102 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ≠ wne 2943 Vcvv 3432 ∖ cdif 3884 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 |
This theorem is referenced by: stirlinglem8 43622 fourierdlem103 43750 fourierdlem104 43751 |
Copyright terms: Public domain | W3C validator |