| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climdivf | Structured version Visualization version GIF version | ||
| Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climdivf.1 | ⊢ Ⅎ𝑘𝜑 |
| climdivf.2 | ⊢ Ⅎ𝑘𝐹 |
| climdivf.3 | ⊢ Ⅎ𝑘𝐺 |
| climdivf.4 | ⊢ Ⅎ𝑘𝐻 |
| climdivf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climdivf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climdivf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climdivf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| climdivf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
| climdivf.10 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| climdivf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climdivf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
| climdivf.13 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
| Ref | Expression |
|---|---|
| climdivf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climdivf.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | climdivf.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
| 3 | nfmpt1 5185 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
| 4 | climdivf.4 | . . 3 ⊢ Ⅎ𝑘𝐻 | |
| 5 | climdivf.5 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | climdivf.6 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | climdivf.7 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 8 | climdivf.8 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 9 | climdivf.3 | . . . 4 ⊢ Ⅎ𝑘𝐺 | |
| 10 | climdivf.9 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
| 11 | climdivf.10 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 12 | climdivf.12 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
| 13 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 14 | 12 | eldifad 3909 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| 15 | eldifsni 4737 | . . . . . . 7 ⊢ ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) → (𝐺‘𝑘) ≠ 0) | |
| 16 | 12, 15 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≠ 0) |
| 17 | 14, 16 | reccld 11885 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) ∈ ℂ) |
| 18 | eqid 2731 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
| 19 | 18 | fvmpt2 6935 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ (1 / (𝐺‘𝑘)) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
| 20 | 13, 17, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
| 21 | 5 | fvexi 6831 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 22 | 21 | mptex 7152 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V) |
| 24 | 1, 9, 3, 5, 6, 10, 11, 12, 20, 23 | climrecf 45649 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ⇝ (1 / 𝐵)) |
| 25 | climdivf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 26 | 20, 17 | eqeltrd 2831 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) ∈ ℂ) |
| 27 | climdivf.13 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) | |
| 28 | 25, 14, 16 | divrecd 11895 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
| 29 | 20 | eqcomd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) = ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘)) |
| 30 | 29 | oveq2d 7357 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) · (1 / (𝐺‘𝑘))) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
| 31 | 27, 28, 30 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
| 32 | 1, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31 | climmulf 45644 | . 2 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · (1 / 𝐵))) |
| 33 | climcl 15401 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 34 | 7, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 35 | climcl 15401 | . . . 4 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
| 36 | 10, 35 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 37 | 34, 36, 11 | divrecd 11895 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| 38 | 32, 37 | breqtrrd 5114 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 {csn 4571 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 · cmul 11006 / cdiv 11769 ℤcz 12463 ℤ≥cuz 12727 ⇝ cli 15386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 |
| This theorem is referenced by: stirlinglem8 46119 fourierdlem103 46247 fourierdlem104 46248 |
| Copyright terms: Public domain | W3C validator |