Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climdivf Structured version   Visualization version   GIF version

Theorem climdivf 42254
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climdivf.1 𝑘𝜑
climdivf.2 𝑘𝐹
climdivf.3 𝑘𝐺
climdivf.4 𝑘𝐻
climdivf.5 𝑍 = (ℤ𝑀)
climdivf.6 (𝜑𝑀 ∈ ℤ)
climdivf.7 (𝜑𝐹𝐴)
climdivf.8 (𝜑𝐻𝑋)
climdivf.9 (𝜑𝐺𝐵)
climdivf.10 (𝜑𝐵 ≠ 0)
climdivf.11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climdivf.12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climdivf.13 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
climdivf (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climdivf
StepHypRef Expression
1 climdivf.1 . . 3 𝑘𝜑
2 climdivf.2 . . 3 𝑘𝐹
3 nfmpt1 5128 . . 3 𝑘(𝑘𝑍 ↦ (1 / (𝐺𝑘)))
4 climdivf.4 . . 3 𝑘𝐻
5 climdivf.5 . . 3 𝑍 = (ℤ𝑀)
6 climdivf.6 . . 3 (𝜑𝑀 ∈ ℤ)
7 climdivf.7 . . 3 (𝜑𝐹𝐴)
8 climdivf.8 . . 3 (𝜑𝐻𝑋)
9 climdivf.3 . . . 4 𝑘𝐺
10 climdivf.9 . . . 4 (𝜑𝐺𝐵)
11 climdivf.10 . . . 4 (𝜑𝐵 ≠ 0)
12 climdivf.12 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
13 simpr 488 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
1412eldifad 3893 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
15 eldifsni 4683 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
1612, 15syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
1714, 16reccld 11398 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
18 eqid 2798 . . . . . 6 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) = (𝑘𝑍 ↦ (1 / (𝐺𝑘)))
1918fvmpt2 6756 . . . . 5 ((𝑘𝑍 ∧ (1 / (𝐺𝑘)) ∈ ℂ) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
2013, 17, 19syl2anc 587 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
215fvexi 6659 . . . . . 6 𝑍 ∈ V
2221mptex 6963 . . . . 5 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V
2322a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V)
241, 9, 3, 5, 6, 10, 11, 12, 20, 23climrecf 42251 . . 3 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ⇝ (1 / 𝐵))
25 climdivf.11 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2620, 17eqeltrd 2890 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) ∈ ℂ)
27 climdivf.13 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
2825, 14, 16divrecd 11408 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2920eqcomd 2804 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) = ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘))
3029oveq2d 7151 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (1 / (𝐺𝑘))) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
3127, 28, 303eqtrd 2837 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
321, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31climmulf 42246 . 2 (𝜑𝐻 ⇝ (𝐴 · (1 / 𝐵)))
33 climcl 14848 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
347, 33syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
35 climcl 14848 . . . 4 (𝐺𝐵𝐵 ∈ ℂ)
3610, 35syl 17 . . 3 (𝜑𝐵 ∈ ℂ)
3734, 36, 11divrecd 11408 . 2 (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
3832, 37breqtrrd 5058 1 (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  wne 2987  Vcvv 3441  cdif 3878  {csn 4525   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531   / cdiv 11286  cz 11969  cuz 12231  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  stirlinglem8  42723  fourierdlem103  42851  fourierdlem104  42852
  Copyright terms: Public domain W3C validator