Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climdivf Structured version   Visualization version   GIF version

Theorem climdivf 45533
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climdivf.1 𝑘𝜑
climdivf.2 𝑘𝐹
climdivf.3 𝑘𝐺
climdivf.4 𝑘𝐻
climdivf.5 𝑍 = (ℤ𝑀)
climdivf.6 (𝜑𝑀 ∈ ℤ)
climdivf.7 (𝜑𝐹𝐴)
climdivf.8 (𝜑𝐻𝑋)
climdivf.9 (𝜑𝐺𝐵)
climdivf.10 (𝜑𝐵 ≠ 0)
climdivf.11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climdivf.12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climdivf.13 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
climdivf (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climdivf
StepHypRef Expression
1 climdivf.1 . . 3 𝑘𝜑
2 climdivf.2 . . 3 𝑘𝐹
3 nfmpt1 5274 . . 3 𝑘(𝑘𝑍 ↦ (1 / (𝐺𝑘)))
4 climdivf.4 . . 3 𝑘𝐻
5 climdivf.5 . . 3 𝑍 = (ℤ𝑀)
6 climdivf.6 . . 3 (𝜑𝑀 ∈ ℤ)
7 climdivf.7 . . 3 (𝜑𝐹𝐴)
8 climdivf.8 . . 3 (𝜑𝐻𝑋)
9 climdivf.3 . . . 4 𝑘𝐺
10 climdivf.9 . . . 4 (𝜑𝐺𝐵)
11 climdivf.10 . . . 4 (𝜑𝐵 ≠ 0)
12 climdivf.12 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
13 simpr 484 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
1412eldifad 3988 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
15 eldifsni 4815 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
1612, 15syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
1714, 16reccld 12063 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
18 eqid 2740 . . . . . 6 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) = (𝑘𝑍 ↦ (1 / (𝐺𝑘)))
1918fvmpt2 7040 . . . . 5 ((𝑘𝑍 ∧ (1 / (𝐺𝑘)) ∈ ℂ) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
2013, 17, 19syl2anc 583 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
215fvexi 6934 . . . . . 6 𝑍 ∈ V
2221mptex 7260 . . . . 5 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V
2322a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V)
241, 9, 3, 5, 6, 10, 11, 12, 20, 23climrecf 45530 . . 3 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ⇝ (1 / 𝐵))
25 climdivf.11 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2620, 17eqeltrd 2844 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) ∈ ℂ)
27 climdivf.13 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
2825, 14, 16divrecd 12073 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2920eqcomd 2746 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) = ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘))
3029oveq2d 7464 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (1 / (𝐺𝑘))) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
3127, 28, 303eqtrd 2784 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
321, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31climmulf 45525 . 2 (𝜑𝐻 ⇝ (𝐴 · (1 / 𝐵)))
33 climcl 15545 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
347, 33syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
35 climcl 15545 . . . 4 (𝐺𝐵𝐵 ∈ ℂ)
3610, 35syl 17 . . 3 (𝜑𝐵 ∈ ℂ)
3734, 36, 11divrecd 12073 . 2 (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
3832, 37breqtrrd 5194 1 (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wne 2946  Vcvv 3488  cdif 3973  {csn 4648   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947  cz 12639  cuz 12903  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  stirlinglem8  46002  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator