![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climdivf | Structured version Visualization version GIF version |
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climdivf.1 | ⊢ Ⅎ𝑘𝜑 |
climdivf.2 | ⊢ Ⅎ𝑘𝐹 |
climdivf.3 | ⊢ Ⅎ𝑘𝐺 |
climdivf.4 | ⊢ Ⅎ𝑘𝐻 |
climdivf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climdivf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climdivf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climdivf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climdivf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climdivf.10 | ⊢ (𝜑 → 𝐵 ≠ 0) |
climdivf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climdivf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climdivf.13 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climdivf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdivf.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | climdivf.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
3 | nfmpt1 5274 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
4 | climdivf.4 | . . 3 ⊢ Ⅎ𝑘𝐻 | |
5 | climdivf.5 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climdivf.6 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climdivf.7 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climdivf.8 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
9 | climdivf.3 | . . . 4 ⊢ Ⅎ𝑘𝐺 | |
10 | climdivf.9 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
11 | climdivf.10 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
12 | climdivf.12 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
13 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
14 | 12 | eldifad 3988 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
15 | eldifsni 4815 | . . . . . . 7 ⊢ ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) → (𝐺‘𝑘) ≠ 0) | |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≠ 0) |
17 | 14, 16 | reccld 12063 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) ∈ ℂ) |
18 | eqid 2740 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
19 | 18 | fvmpt2 7040 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ (1 / (𝐺‘𝑘)) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
20 | 13, 17, 19 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
21 | 5 | fvexi 6934 | . . . . . 6 ⊢ 𝑍 ∈ V |
22 | 21 | mptex 7260 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V) |
24 | 1, 9, 3, 5, 6, 10, 11, 12, 20, 23 | climrecf 45530 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ⇝ (1 / 𝐵)) |
25 | climdivf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
26 | 20, 17 | eqeltrd 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) ∈ ℂ) |
27 | climdivf.13 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) | |
28 | 25, 14, 16 | divrecd 12073 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
29 | 20 | eqcomd 2746 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) = ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘)) |
30 | 29 | oveq2d 7464 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) · (1 / (𝐺‘𝑘))) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
31 | 27, 28, 30 | 3eqtrd 2784 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31 | climmulf 45525 | . 2 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · (1 / 𝐵))) |
33 | climcl 15545 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
34 | 7, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
35 | climcl 15545 | . . . 4 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
36 | 10, 35 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
37 | 34, 36, 11 | divrecd 12073 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
38 | 32, 37 | breqtrrd 5194 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 Vcvv 3488 ∖ cdif 3973 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 / cdiv 11947 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 |
This theorem is referenced by: stirlinglem8 46002 fourierdlem103 46130 fourierdlem104 46131 |
Copyright terms: Public domain | W3C validator |