Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climdivf | Structured version Visualization version GIF version |
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climdivf.1 | ⊢ Ⅎ𝑘𝜑 |
climdivf.2 | ⊢ Ⅎ𝑘𝐹 |
climdivf.3 | ⊢ Ⅎ𝑘𝐺 |
climdivf.4 | ⊢ Ⅎ𝑘𝐻 |
climdivf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climdivf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climdivf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climdivf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climdivf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climdivf.10 | ⊢ (𝜑 → 𝐵 ≠ 0) |
climdivf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climdivf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climdivf.13 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climdivf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdivf.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | climdivf.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
3 | nfmpt1 5178 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
4 | climdivf.4 | . . 3 ⊢ Ⅎ𝑘𝐻 | |
5 | climdivf.5 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climdivf.6 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climdivf.7 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climdivf.8 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
9 | climdivf.3 | . . . 4 ⊢ Ⅎ𝑘𝐺 | |
10 | climdivf.9 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
11 | climdivf.10 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
12 | climdivf.12 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
13 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
14 | 12 | eldifad 3895 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
15 | eldifsni 4720 | . . . . . . 7 ⊢ ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) → (𝐺‘𝑘) ≠ 0) | |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≠ 0) |
17 | 14, 16 | reccld 11674 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) ∈ ℂ) |
18 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
19 | 18 | fvmpt2 6868 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ (1 / (𝐺‘𝑘)) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
20 | 13, 17, 19 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
21 | 5 | fvexi 6770 | . . . . . 6 ⊢ 𝑍 ∈ V |
22 | 21 | mptex 7081 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V) |
24 | 1, 9, 3, 5, 6, 10, 11, 12, 20, 23 | climrecf 43040 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ⇝ (1 / 𝐵)) |
25 | climdivf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
26 | 20, 17 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) ∈ ℂ) |
27 | climdivf.13 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) | |
28 | 25, 14, 16 | divrecd 11684 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
29 | 20 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) = ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘)) |
30 | 29 | oveq2d 7271 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) · (1 / (𝐺‘𝑘))) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
31 | 27, 28, 30 | 3eqtrd 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31 | climmulf 43035 | . 2 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · (1 / 𝐵))) |
33 | climcl 15136 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
34 | 7, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
35 | climcl 15136 | . . . 4 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
36 | 10, 35 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
37 | 34, 36, 11 | divrecd 11684 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
38 | 32, 37 | breqtrrd 5098 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 / cdiv 11562 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 |
This theorem is referenced by: stirlinglem8 43512 fourierdlem103 43640 fourierdlem104 43641 |
Copyright terms: Public domain | W3C validator |