Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climdivf Structured version   Visualization version   GIF version

Theorem climdivf 45617
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climdivf.1 𝑘𝜑
climdivf.2 𝑘𝐹
climdivf.3 𝑘𝐺
climdivf.4 𝑘𝐻
climdivf.5 𝑍 = (ℤ𝑀)
climdivf.6 (𝜑𝑀 ∈ ℤ)
climdivf.7 (𝜑𝐹𝐴)
climdivf.8 (𝜑𝐻𝑋)
climdivf.9 (𝜑𝐺𝐵)
climdivf.10 (𝜑𝐵 ≠ 0)
climdivf.11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climdivf.12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climdivf.13 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
climdivf (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climdivf
StepHypRef Expression
1 climdivf.1 . . 3 𝑘𝜑
2 climdivf.2 . . 3 𝑘𝐹
3 nfmpt1 5209 . . 3 𝑘(𝑘𝑍 ↦ (1 / (𝐺𝑘)))
4 climdivf.4 . . 3 𝑘𝐻
5 climdivf.5 . . 3 𝑍 = (ℤ𝑀)
6 climdivf.6 . . 3 (𝜑𝑀 ∈ ℤ)
7 climdivf.7 . . 3 (𝜑𝐹𝐴)
8 climdivf.8 . . 3 (𝜑𝐻𝑋)
9 climdivf.3 . . . 4 𝑘𝐺
10 climdivf.9 . . . 4 (𝜑𝐺𝐵)
11 climdivf.10 . . . 4 (𝜑𝐵 ≠ 0)
12 climdivf.12 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
13 simpr 484 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
1412eldifad 3929 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
15 eldifsni 4757 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
1612, 15syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
1714, 16reccld 11958 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
18 eqid 2730 . . . . . 6 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) = (𝑘𝑍 ↦ (1 / (𝐺𝑘)))
1918fvmpt2 6982 . . . . 5 ((𝑘𝑍 ∧ (1 / (𝐺𝑘)) ∈ ℂ) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
2013, 17, 19syl2anc 584 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
215fvexi 6875 . . . . . 6 𝑍 ∈ V
2221mptex 7200 . . . . 5 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V
2322a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V)
241, 9, 3, 5, 6, 10, 11, 12, 20, 23climrecf 45614 . . 3 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ⇝ (1 / 𝐵))
25 climdivf.11 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2620, 17eqeltrd 2829 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) ∈ ℂ)
27 climdivf.13 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
2825, 14, 16divrecd 11968 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2920eqcomd 2736 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) = ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘))
3029oveq2d 7406 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (1 / (𝐺𝑘))) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
3127, 28, 303eqtrd 2769 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
321, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31climmulf 45609 . 2 (𝜑𝐻 ⇝ (𝐴 · (1 / 𝐵)))
33 climcl 15472 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
347, 33syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
35 climcl 15472 . . . 4 (𝐺𝐵𝐵 ∈ ℂ)
3610, 35syl 17 . . 3 (𝜑𝐵 ∈ ℂ)
3734, 36, 11divrecd 11968 . 2 (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
3832, 37breqtrrd 5138 1 (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wne 2926  Vcvv 3450  cdif 3914  {csn 4592   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  cz 12536  cuz 12800  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by:  stirlinglem8  46086  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator