![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climdivf | Structured version Visualization version GIF version |
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climdivf.1 | ⊢ Ⅎ𝑘𝜑 |
climdivf.2 | ⊢ Ⅎ𝑘𝐹 |
climdivf.3 | ⊢ Ⅎ𝑘𝐺 |
climdivf.4 | ⊢ Ⅎ𝑘𝐻 |
climdivf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climdivf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climdivf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climdivf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climdivf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climdivf.10 | ⊢ (𝜑 → 𝐵 ≠ 0) |
climdivf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climdivf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climdivf.13 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climdivf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdivf.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | climdivf.2 | . . 3 ⊢ Ⅎ𝑘𝐹 | |
3 | nfmpt1 5261 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
4 | climdivf.4 | . . 3 ⊢ Ⅎ𝑘𝐻 | |
5 | climdivf.5 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climdivf.6 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climdivf.7 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
8 | climdivf.8 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
9 | climdivf.3 | . . . 4 ⊢ Ⅎ𝑘𝐺 | |
10 | climdivf.9 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
11 | climdivf.10 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
12 | climdivf.12 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
13 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
14 | 12 | eldifad 3959 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
15 | eldifsni 4799 | . . . . . . 7 ⊢ ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) → (𝐺‘𝑘) ≠ 0) | |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≠ 0) |
17 | 14, 16 | reccld 12034 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) ∈ ℂ) |
18 | eqid 2726 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) | |
19 | 18 | fvmpt2 7020 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ (1 / (𝐺‘𝑘)) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
20 | 13, 17, 19 | syl2anc 582 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) = (1 / (𝐺‘𝑘))) |
21 | 5 | fvexi 6915 | . . . . . 6 ⊢ 𝑍 ∈ V |
22 | 21 | mptex 7240 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ∈ V) |
24 | 1, 9, 3, 5, 6, 10, 11, 12, 20, 23 | climrecf 45230 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘))) ⇝ (1 / 𝐵)) |
25 | climdivf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
26 | 20, 17 | eqeltrd 2826 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘) ∈ ℂ) |
27 | climdivf.13 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) | |
28 | 25, 14, 16 | divrecd 12044 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
29 | 20 | eqcomd 2732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 / (𝐺‘𝑘)) = ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘)) |
30 | 29 | oveq2d 7440 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) · (1 / (𝐺‘𝑘))) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
31 | 27, 28, 30 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑘 ∈ 𝑍 ↦ (1 / (𝐺‘𝑘)))‘𝑘))) |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 24, 25, 26, 31 | climmulf 45225 | . 2 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · (1 / 𝐵))) |
33 | climcl 15501 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
34 | 7, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
35 | climcl 15501 | . . . 4 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
36 | 10, 35 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
37 | 34, 36, 11 | divrecd 12044 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
38 | 32, 37 | breqtrrd 5181 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2876 ≠ wne 2930 Vcvv 3462 ∖ cdif 3944 {csn 4633 class class class wbr 5153 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 0cc0 11158 1c1 11159 · cmul 11163 / cdiv 11921 ℤcz 12610 ℤ≥cuz 12874 ⇝ cli 15486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 |
This theorem is referenced by: stirlinglem8 45702 fourierdlem103 45830 fourierdlem104 45831 |
Copyright terms: Public domain | W3C validator |