MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflim Structured version   Visualization version   GIF version

Theorem mbflim 23835
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflim.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
Assertion
Ref Expression
mbflim (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mbflim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . 3 𝑍 = (ℤ𝑀)
2 mbflim.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 mbflim.4 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
41fvexi 6448 . . . . . 6 𝑍 ∈ V
54mptex 6743 . . . . 5 (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V
65a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V)
72adantr 474 . . . 4 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
8 mbflim.5 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
9 mbflim.6 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
109anassrs 461 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
118, 10mbfmptcl 23803 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1211an32s 644 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
1312fmpttd 6635 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℂ)
1413ffvelrnda 6609 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℂ)
15 simpr 479 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
1612recld 14312 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘𝐵) ∈ ℝ)
17 eqid 2826 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℜ‘𝐵)) = (𝑛𝑍 ↦ (ℜ‘𝐵))
1817fvmpt2 6539 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
1915, 16, 18syl2anc 581 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
20 eqid 2826 . . . . . . . . . . 11 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
2120fvmpt2 6539 . . . . . . . . . 10 ((𝑛𝑍𝐵 ∈ ℂ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2215, 12, 21syl2anc 581 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2322fveq2d 6438 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘((𝑛𝑍𝐵)‘𝑛)) = (ℜ‘𝐵))
2419, 23eqtr4d 2865 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
2524ralrimiva 3176 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
26 nffvmpt1 6445 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘)
27 nfcv 2970 . . . . . . . . 9 𝑛
28 nffvmpt1 6445 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑘)
2927, 28nffv 6444 . . . . . . . 8 𝑛(ℜ‘((𝑛𝑍𝐵)‘𝑘))
3026, 29nfeq 2982 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘))
31 nfv 2015 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))
32 fveq2 6434 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛))
33 2fveq3 6439 . . . . . . . 8 (𝑘 = 𝑛 → (ℜ‘((𝑛𝑍𝐵)‘𝑘)) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3432, 33eqeq12d 2841 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))))
3530, 31, 34cbvral 3380 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3625, 35sylibr 226 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
3736r19.21bi 3142 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
381, 3, 6, 7, 14, 37climre 14714 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ⇝ (ℜ‘𝐶))
3911ismbfcn2 23805 . . . . 5 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
408, 39mpbid 224 . . . 4 ((𝜑𝑛𝑍) → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4140simpld 490 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4211anasss 460 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℂ)
4342recld 14312 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℜ‘𝐵) ∈ ℝ)
441, 2, 38, 41, 43mbflimlem 23834 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
454mptex 6743 . . . . 5 (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V
4645a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V)
4712imcld 14313 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘𝐵) ∈ ℝ)
48 eqid 2826 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℑ‘𝐵)) = (𝑛𝑍 ↦ (ℑ‘𝐵))
4948fvmpt2 6539 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5015, 47, 49syl2anc 581 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5122fveq2d 6438 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘((𝑛𝑍𝐵)‘𝑛)) = (ℑ‘𝐵))
5250, 51eqtr4d 2865 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
5352ralrimiva 3176 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
54 nffvmpt1 6445 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘)
55 nfcv 2970 . . . . . . . . 9 𝑛
5655, 28nffv 6444 . . . . . . . 8 𝑛(ℑ‘((𝑛𝑍𝐵)‘𝑘))
5754, 56nfeq 2982 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘))
58 nfv 2015 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))
59 fveq2 6434 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛))
60 2fveq3 6439 . . . . . . . 8 (𝑘 = 𝑛 → (ℑ‘((𝑛𝑍𝐵)‘𝑘)) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6159, 60eqeq12d 2841 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))))
6257, 58, 61cbvral 3380 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6353, 62sylibr 226 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
6463r19.21bi 3142 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
651, 3, 46, 7, 14, 64climim 14715 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ⇝ (ℑ‘𝐶))
6640simprd 491 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
6742imcld 14313 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℑ‘𝐵) ∈ ℝ)
681, 2, 65, 66, 67mbflimlem 23834 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
69 climcl 14608 . . . 4 ((𝑛𝑍𝐵) ⇝ 𝐶𝐶 ∈ ℂ)
703, 69syl 17 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7170ismbfcn2 23805 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
7244, 68, 71mpbir2and 706 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wral 3118  Vcvv 3415   class class class wbr 4874  cmpt 4953  cfv 6124  cc 10251  cr 10252  cz 11705  cuz 11969  cre 14215  cim 14216  cli 14593  MblFncmbf 23781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cc 9573  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-disj 4843  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-omul 7832  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-acn 9082  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-xadd 12234  df-ioo 12468  df-ioc 12469  df-ico 12470  df-icc 12471  df-fz 12621  df-fzo 12762  df-fl 12889  df-seq 13097  df-exp 13156  df-hash 13412  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-xmet 20100  df-met 20101  df-ovol 23631  df-vol 23632  df-mbf 23786
This theorem is referenced by:  mbfmullem2  23891  mbfulm  24560
  Copyright terms: Public domain W3C validator