MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflim Structured version   Visualization version   GIF version

Theorem mbflim 23742
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflim.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
Assertion
Ref Expression
mbflim (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mbflim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . 3 𝑍 = (ℤ𝑀)
2 mbflim.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 mbflim.4 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
41fvexi 6393 . . . . . 6 𝑍 ∈ V
54mptex 6683 . . . . 5 (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V
65a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V)
72adantr 472 . . . 4 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
8 mbflim.5 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
9 mbflim.6 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
109anassrs 459 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
118, 10mbfmptcl 23710 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1211an32s 642 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
1312fmpttd 6579 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℂ)
1413ffvelrnda 6553 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℂ)
15 simpr 477 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
1612recld 14235 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘𝐵) ∈ ℝ)
17 eqid 2765 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℜ‘𝐵)) = (𝑛𝑍 ↦ (ℜ‘𝐵))
1817fvmpt2 6484 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
1915, 16, 18syl2anc 579 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
20 eqid 2765 . . . . . . . . . . 11 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
2120fvmpt2 6484 . . . . . . . . . 10 ((𝑛𝑍𝐵 ∈ ℂ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2215, 12, 21syl2anc 579 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2322fveq2d 6383 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘((𝑛𝑍𝐵)‘𝑛)) = (ℜ‘𝐵))
2419, 23eqtr4d 2802 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
2524ralrimiva 3113 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
26 nffvmpt1 6390 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘)
27 nfcv 2907 . . . . . . . . 9 𝑛
28 nffvmpt1 6390 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑘)
2927, 28nffv 6389 . . . . . . . 8 𝑛(ℜ‘((𝑛𝑍𝐵)‘𝑘))
3026, 29nfeq 2919 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘))
31 nfv 2009 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))
32 fveq2 6379 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛))
33 2fveq3 6384 . . . . . . . 8 (𝑘 = 𝑛 → (ℜ‘((𝑛𝑍𝐵)‘𝑘)) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3432, 33eqeq12d 2780 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))))
3530, 31, 34cbvral 3315 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3625, 35sylibr 225 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
3736r19.21bi 3079 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
381, 3, 6, 7, 14, 37climre 14637 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ⇝ (ℜ‘𝐶))
3911ismbfcn2 23712 . . . . 5 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
408, 39mpbid 223 . . . 4 ((𝜑𝑛𝑍) → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4140simpld 488 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4211anasss 458 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℂ)
4342recld 14235 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℜ‘𝐵) ∈ ℝ)
441, 2, 38, 41, 43mbflimlem 23741 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
454mptex 6683 . . . . 5 (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V
4645a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V)
4712imcld 14236 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘𝐵) ∈ ℝ)
48 eqid 2765 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℑ‘𝐵)) = (𝑛𝑍 ↦ (ℑ‘𝐵))
4948fvmpt2 6484 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5015, 47, 49syl2anc 579 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5122fveq2d 6383 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘((𝑛𝑍𝐵)‘𝑛)) = (ℑ‘𝐵))
5250, 51eqtr4d 2802 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
5352ralrimiva 3113 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
54 nffvmpt1 6390 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘)
55 nfcv 2907 . . . . . . . . 9 𝑛
5655, 28nffv 6389 . . . . . . . 8 𝑛(ℑ‘((𝑛𝑍𝐵)‘𝑘))
5754, 56nfeq 2919 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘))
58 nfv 2009 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))
59 fveq2 6379 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛))
60 2fveq3 6384 . . . . . . . 8 (𝑘 = 𝑛 → (ℑ‘((𝑛𝑍𝐵)‘𝑘)) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6159, 60eqeq12d 2780 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))))
6257, 58, 61cbvral 3315 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6353, 62sylibr 225 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
6463r19.21bi 3079 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
651, 3, 46, 7, 14, 64climim 14638 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ⇝ (ℑ‘𝐶))
6640simprd 489 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
6742imcld 14236 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℑ‘𝐵) ∈ ℝ)
681, 2, 65, 66, 67mbflimlem 23741 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
69 climcl 14531 . . . 4 ((𝑛𝑍𝐵) ⇝ 𝐶𝐶 ∈ ℂ)
703, 69syl 17 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7170ismbfcn2 23712 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
7244, 68, 71mpbir2and 704 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350   class class class wbr 4811  cmpt 4890  cfv 6070  cc 10191  cr 10192  cz 11629  cuz 11893  cre 14138  cim 14139  cli 14516  MblFncmbf 23688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cc 9514  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-omul 7773  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-acn 9023  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-n0 11544  df-z 11630  df-uz 11894  df-q 11997  df-rp 12036  df-xadd 12154  df-ioo 12388  df-ioc 12389  df-ico 12390  df-icc 12391  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13016  df-exp 13075  df-hash 13329  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-limsup 14503  df-clim 14520  df-rlim 14521  df-sum 14718  df-xmet 20028  df-met 20029  df-ovol 23538  df-vol 23539  df-mbf 23693
This theorem is referenced by:  mbfmullem2  23798  mbfulm  24467
  Copyright terms: Public domain W3C validator