MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflim Structured version   Visualization version   GIF version

Theorem mbflim 25703
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflim.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
Assertion
Ref Expression
mbflim (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mbflim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . 3 𝑍 = (ℤ𝑀)
2 mbflim.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 mbflim.4 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
41fvexi 6920 . . . . . 6 𝑍 ∈ V
54mptex 7243 . . . . 5 (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V
65a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V)
72adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
8 mbflim.5 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
9 mbflim.6 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
109anassrs 467 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
118, 10mbfmptcl 25671 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1211an32s 652 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
1312fmpttd 7135 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℂ)
1413ffvelcdmda 7104 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℂ)
15 simpr 484 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
1612recld 15233 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘𝐵) ∈ ℝ)
17 eqid 2737 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℜ‘𝐵)) = (𝑛𝑍 ↦ (ℜ‘𝐵))
1817fvmpt2 7027 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
1915, 16, 18syl2anc 584 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
20 eqid 2737 . . . . . . . . . . 11 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
2120fvmpt2 7027 . . . . . . . . . 10 ((𝑛𝑍𝐵 ∈ ℂ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2215, 12, 21syl2anc 584 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2322fveq2d 6910 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘((𝑛𝑍𝐵)‘𝑛)) = (ℜ‘𝐵))
2419, 23eqtr4d 2780 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
2524ralrimiva 3146 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
26 nffvmpt1 6917 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘)
27 nfcv 2905 . . . . . . . . 9 𝑛
28 nffvmpt1 6917 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑘)
2927, 28nffv 6916 . . . . . . . 8 𝑛(ℜ‘((𝑛𝑍𝐵)‘𝑘))
3026, 29nfeq 2919 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘))
31 nfv 1914 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))
32 fveq2 6906 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛))
33 2fveq3 6911 . . . . . . . 8 (𝑘 = 𝑛 → (ℜ‘((𝑛𝑍𝐵)‘𝑘)) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3432, 33eqeq12d 2753 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))))
3530, 31, 34cbvralw 3306 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3625, 35sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
3736r19.21bi 3251 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
381, 3, 6, 7, 14, 37climre 15642 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ⇝ (ℜ‘𝐶))
3911ismbfcn2 25673 . . . . 5 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
408, 39mpbid 232 . . . 4 ((𝜑𝑛𝑍) → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4140simpld 494 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4211anasss 466 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℂ)
4342recld 15233 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℜ‘𝐵) ∈ ℝ)
441, 2, 38, 41, 43mbflimlem 25702 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
454mptex 7243 . . . . 5 (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V
4645a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V)
4712imcld 15234 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘𝐵) ∈ ℝ)
48 eqid 2737 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℑ‘𝐵)) = (𝑛𝑍 ↦ (ℑ‘𝐵))
4948fvmpt2 7027 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5015, 47, 49syl2anc 584 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5122fveq2d 6910 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘((𝑛𝑍𝐵)‘𝑛)) = (ℑ‘𝐵))
5250, 51eqtr4d 2780 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
5352ralrimiva 3146 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
54 nffvmpt1 6917 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘)
55 nfcv 2905 . . . . . . . . 9 𝑛
5655, 28nffv 6916 . . . . . . . 8 𝑛(ℑ‘((𝑛𝑍𝐵)‘𝑘))
5754, 56nfeq 2919 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘))
58 nfv 1914 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))
59 fveq2 6906 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛))
60 2fveq3 6911 . . . . . . . 8 (𝑘 = 𝑛 → (ℑ‘((𝑛𝑍𝐵)‘𝑘)) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6159, 60eqeq12d 2753 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))))
6257, 58, 61cbvralw 3306 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6353, 62sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
6463r19.21bi 3251 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
651, 3, 46, 7, 14, 64climim 15643 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ⇝ (ℑ‘𝐶))
6640simprd 495 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
6742imcld 15234 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℑ‘𝐵) ∈ ℝ)
681, 2, 65, 66, 67mbflimlem 25702 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
69 climcl 15535 . . . 4 ((𝑛𝑍𝐵) ⇝ 𝐶𝐶 ∈ ℂ)
703, 69syl 17 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7170ismbfcn2 25673 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
7244, 68, 71mpbir2and 713 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480   class class class wbr 5143  cmpt 5225  cfv 6561  cc 11153  cr 11154  cz 12613  cuz 12878  cre 15136  cim 15137  cli 15520  MblFncmbf 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-mbf 25654
This theorem is referenced by:  mbfmullem2  25759  mbfulm  26449
  Copyright terms: Public domain W3C validator