MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflim Structured version   Visualization version   GIF version

Theorem mbflim 25590
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflim.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
Assertion
Ref Expression
mbflim (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mbflim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . 3 𝑍 = (ℤ𝑀)
2 mbflim.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 mbflim.4 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
41fvexi 6905 . . . . . 6 𝑍 ∈ V
54mptex 7229 . . . . 5 (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V
65a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V)
72adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
8 mbflim.5 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
9 mbflim.6 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
109anassrs 467 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
118, 10mbfmptcl 25558 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1211an32s 651 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
1312fmpttd 7119 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℂ)
1413ffvelcdmda 7088 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℂ)
15 simpr 484 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
1612recld 15167 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘𝐵) ∈ ℝ)
17 eqid 2728 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℜ‘𝐵)) = (𝑛𝑍 ↦ (ℜ‘𝐵))
1817fvmpt2 7010 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
1915, 16, 18syl2anc 583 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
20 eqid 2728 . . . . . . . . . . 11 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
2120fvmpt2 7010 . . . . . . . . . 10 ((𝑛𝑍𝐵 ∈ ℂ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2215, 12, 21syl2anc 583 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2322fveq2d 6895 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘((𝑛𝑍𝐵)‘𝑛)) = (ℜ‘𝐵))
2419, 23eqtr4d 2771 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
2524ralrimiva 3142 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
26 nffvmpt1 6902 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘)
27 nfcv 2899 . . . . . . . . 9 𝑛
28 nffvmpt1 6902 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑘)
2927, 28nffv 6901 . . . . . . . 8 𝑛(ℜ‘((𝑛𝑍𝐵)‘𝑘))
3026, 29nfeq 2912 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘))
31 nfv 1910 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))
32 fveq2 6891 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛))
33 2fveq3 6896 . . . . . . . 8 (𝑘 = 𝑛 → (ℜ‘((𝑛𝑍𝐵)‘𝑘)) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3432, 33eqeq12d 2744 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))))
3530, 31, 34cbvralw 3299 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3625, 35sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
3736r19.21bi 3244 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
381, 3, 6, 7, 14, 37climre 15576 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ⇝ (ℜ‘𝐶))
3911ismbfcn2 25560 . . . . 5 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
408, 39mpbid 231 . . . 4 ((𝜑𝑛𝑍) → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4140simpld 494 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4211anasss 466 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℂ)
4342recld 15167 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℜ‘𝐵) ∈ ℝ)
441, 2, 38, 41, 43mbflimlem 25589 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
454mptex 7229 . . . . 5 (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V
4645a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V)
4712imcld 15168 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘𝐵) ∈ ℝ)
48 eqid 2728 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℑ‘𝐵)) = (𝑛𝑍 ↦ (ℑ‘𝐵))
4948fvmpt2 7010 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5015, 47, 49syl2anc 583 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5122fveq2d 6895 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘((𝑛𝑍𝐵)‘𝑛)) = (ℑ‘𝐵))
5250, 51eqtr4d 2771 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
5352ralrimiva 3142 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
54 nffvmpt1 6902 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘)
55 nfcv 2899 . . . . . . . . 9 𝑛
5655, 28nffv 6901 . . . . . . . 8 𝑛(ℑ‘((𝑛𝑍𝐵)‘𝑘))
5754, 56nfeq 2912 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘))
58 nfv 1910 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))
59 fveq2 6891 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛))
60 2fveq3 6896 . . . . . . . 8 (𝑘 = 𝑛 → (ℑ‘((𝑛𝑍𝐵)‘𝑘)) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6159, 60eqeq12d 2744 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))))
6257, 58, 61cbvralw 3299 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6353, 62sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
6463r19.21bi 3244 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
651, 3, 46, 7, 14, 64climim 15577 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ⇝ (ℑ‘𝐶))
6640simprd 495 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
6742imcld 15168 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℑ‘𝐵) ∈ ℝ)
681, 2, 65, 66, 67mbflimlem 25589 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
69 climcl 15469 . . . 4 ((𝑛𝑍𝐵) ⇝ 𝐶𝐶 ∈ ℂ)
703, 69syl 17 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7170ismbfcn2 25560 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
7244, 68, 71mpbir2and 712 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470   class class class wbr 5142  cmpt 5225  cfv 6542  cc 11130  cr 11131  cz 12582  cuz 12846  cre 15070  cim 15071  cli 15454  MblFncmbf 25536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xadd 13119  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-xmet 21265  df-met 21266  df-ovol 25386  df-vol 25387  df-mbf 25541
This theorem is referenced by:  mbfmullem2  25647  mbfulm  26335
  Copyright terms: Public domain W3C validator