MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divccn Structured version   Visualization version   GIF version

Theorem divccn 24735
Description: Division by a nonzero constant is a continuous operation. (Contributed by Mario Carneiro, 5-May-2014.) Avoid ax-mulf 11187. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
expcn.j 𝐽 = (TopOpenβ€˜β„‚fld)
Assertion
Ref Expression
divccn ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ ∈ β„‚ ↦ (π‘₯ / 𝐴)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐽

Proof of Theorem divccn
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrec 11887 . . . . 5 ((π‘₯ ∈ β„‚ ∧ 𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ / 𝐴) = (π‘₯ Β· (1 / 𝐴)))
213expb 1117 . . . 4 ((π‘₯ ∈ β„‚ ∧ (𝐴 ∈ β„‚ ∧ 𝐴 β‰  0)) β†’ (π‘₯ / 𝐴) = (π‘₯ Β· (1 / 𝐴)))
32ancoms 458 . . 3 (((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) ∧ π‘₯ ∈ β„‚) β†’ (π‘₯ / 𝐴) = (π‘₯ Β· (1 / 𝐴)))
43mpteq2dva 5239 . 2 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ ∈ β„‚ ↦ (π‘₯ / 𝐴)) = (π‘₯ ∈ β„‚ ↦ (π‘₯ Β· (1 / 𝐴))))
5 expcn.j . . . . 5 𝐽 = (TopOpenβ€˜β„‚fld)
65cnfldtopon 24643 . . . 4 𝐽 ∈ (TopOnβ€˜β„‚)
76a1i 11 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ 𝐽 ∈ (TopOnβ€˜β„‚))
87cnmptid 23509 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ ∈ β„‚ ↦ π‘₯) ∈ (𝐽 Cn 𝐽))
9 reccl 11878 . . . 4 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (1 / 𝐴) ∈ β„‚)
107, 7, 9cnmptc 23510 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ ∈ β„‚ ↦ (1 / 𝐴)) ∈ (𝐽 Cn 𝐽))
115mpomulcn 24729 . . . 4 (𝑒 ∈ β„‚, 𝑣 ∈ β„‚ ↦ (𝑒 Β· 𝑣)) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽)
1211a1i 11 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (𝑒 ∈ β„‚, 𝑣 ∈ β„‚ ↦ (𝑒 Β· 𝑣)) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
13 oveq12 7411 . . 3 ((𝑒 = π‘₯ ∧ 𝑣 = (1 / 𝐴)) β†’ (𝑒 Β· 𝑣) = (π‘₯ Β· (1 / 𝐴)))
147, 8, 10, 7, 7, 12, 13cnmpt12 23515 . 2 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ ∈ β„‚ ↦ (π‘₯ Β· (1 / 𝐴))) ∈ (𝐽 Cn 𝐽))
154, 14eqeltrd 2825 1 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ (π‘₯ ∈ β„‚ ↦ (π‘₯ / 𝐴)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   ↦ cmpt 5222  β€˜cfv 6534  (class class class)co 7402   ∈ cmpo 7404  β„‚cc 11105  0cc0 11107  1c1 11108   Β· cmul 11112   / cdiv 11870  TopOpenctopn 17372  β„‚fldccnfld 21234  TopOnctopon 22756   Cn ccn 23072   Γ—t ctx 23408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-icc 13332  df-fz 13486  df-fzo 13629  df-seq 13968  df-exp 14029  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-mulg 18992  df-cntz 19229  df-cmn 19698  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-cnfld 21235  df-top 22740  df-topon 22757  df-topsp 22779  df-bases 22793  df-cn 23075  df-cnp 23076  df-tx 23410  df-hmeo 23603  df-xms 24170  df-ms 24171  df-tms 24172
This theorem is referenced by:  icchmeo  24809  icchmeoOLD  24810  pcoass  24895  dipcn  30468  sinccvglem  35175
  Copyright terms: Public domain W3C validator