MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtcn Structured version   Visualization version   GIF version

Theorem sqrtcn 25035
Description: Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016.)
Hypothesis
Ref Expression
sqrcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
sqrtcn (√ ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem sqrtcn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrtf 14587 . . . . . . 7 √:ℂ⟶ℂ
21a1i 11 . . . . . 6 (⊤ → √:ℂ⟶ℂ)
32feqmptd 6564 . . . . 5 (⊤ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
43reseq1d 5695 . . . 4 (⊤ → (√ ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷))
5 sqrcn.d . . . . . 6 𝐷 = (ℂ ∖ (-∞(,]0))
6 difss 4000 . . . . . 6 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
75, 6eqsstri 3893 . . . . 5 𝐷 ⊆ ℂ
8 resmpt 5752 . . . . 5 (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥𝐷 ↦ (√‘𝑥)))
97, 8mp1i 13 . . . 4 (⊤ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥𝐷 ↦ (√‘𝑥)))
107sseli 3856 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℂ)
1110adantl 474 . . . . . . 7 ((⊤ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
12 cxpsqrt 24990 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
1311, 12syl 17 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
1413eqcomd 2784 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (√‘𝑥) = (𝑥𝑐(1 / 2)))
1514mpteq2dva 5023 . . . 4 (⊤ → (𝑥𝐷 ↦ (√‘𝑥)) = (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))))
164, 9, 153eqtrd 2818 . . 3 (⊤ → (√ ↾ 𝐷) = (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))))
17 eqid 2778 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1817cnfldtopon 23097 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1918a1i 11 . . . . . 6 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
20 resttopon 21476 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
2119, 7, 20sylancl 577 . . . . 5 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
2221cnmptid 21976 . . . . 5 (⊤ → (𝑥𝐷𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t 𝐷)))
23 ax-1cn 10395 . . . . . . 7 1 ∈ ℂ
24 halfcl 11675 . . . . . . 7 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
2523, 24mp1i 13 . . . . . 6 (⊤ → (1 / 2) ∈ ℂ)
2621, 19, 25cnmptc 21977 . . . . 5 (⊤ → (𝑥𝐷 ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
27 eqid 2778 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
285, 17, 27cxpcn 25030 . . . . . 6 (𝑦𝐷, 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . . 5 (⊤ → (𝑦𝐷, 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
30 oveq12 6987 . . . . 5 ((𝑦 = 𝑥𝑧 = (1 / 2)) → (𝑦𝑐𝑧) = (𝑥𝑐(1 / 2)))
3121, 22, 26, 21, 19, 29, 30cnmpt12 21982 . . . 4 (⊤ → (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
32 ssid 3881 . . . . 5 ℂ ⊆ ℂ
3318toponrestid 21236 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3417, 27, 33cncfcn 23223 . . . . 5 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
357, 32, 34mp2an 679 . . . 4 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
3631, 35syl6eleqr 2877 . . 3 (⊤ → (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))) ∈ (𝐷cn→ℂ))
3716, 36eqeltrd 2866 . 2 (⊤ → (√ ↾ 𝐷) ∈ (𝐷cn→ℂ))
3837mptru 1514 1 (√ ↾ 𝐷) ∈ (𝐷cn→ℂ)
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1507  wtru 1508  wcel 2050  cdif 3828  wss 3831  cmpt 5009  cres 5410  wf 6186  cfv 6190  (class class class)co 6978  cmpo 6980  cc 10335  0cc0 10337  1c1 10338  -∞cmnf 10474   / cdiv 11100  2c2 11498  (,]cioc 12558  csqrt 14456  t crest 16553  TopOpenctopn 16554  fldccnfld 20250  TopOnctopon 21225   Cn ccn 21539   ×t ctx 21875  cnccncf 23190  𝑐ccxp 24843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ioc 12562  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-fac 13452  df-bc 13481  df-hash 13509  df-shft 14290  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-limsup 14692  df-clim 14709  df-rlim 14710  df-sum 14907  df-ef 15284  df-sin 15286  df-cos 15287  df-tan 15288  df-pi 15289  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-mulg 18015  df-cntz 18221  df-cmn 18671  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-fbas 20247  df-fg 20248  df-cnfld 20251  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-ntr 21335  df-cls 21336  df-nei 21413  df-lp 21451  df-perf 21452  df-cn 21542  df-cnp 21543  df-haus 21630  df-cmp 21702  df-tx 21877  df-hmeo 22070  df-fil 22161  df-fm 22253  df-flim 22254  df-flf 22255  df-xms 22636  df-ms 22637  df-tms 22638  df-cncf 23192  df-limc 24170  df-dv 24171  df-log 24844  df-cxp 24845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator