Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtcn Structured version   Visualization version   GIF version

Theorem sqrtcn 25337
 Description: Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016.)
Hypothesis
Ref Expression
sqrcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
sqrtcn (√ ↾ 𝐷) ∈ (𝐷cn→ℂ)

Proof of Theorem sqrtcn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrtf 14721 . . . . . . 7 √:ℂ⟶ℂ
21a1i 11 . . . . . 6 (⊤ → √:ℂ⟶ℂ)
32feqmptd 6722 . . . . 5 (⊤ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
43reseq1d 5840 . . . 4 (⊤ → (√ ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷))
5 sqrcn.d . . . . . 6 𝐷 = (ℂ ∖ (-∞(,]0))
6 difss 4094 . . . . . 6 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
75, 6eqsstri 3987 . . . . 5 𝐷 ⊆ ℂ
8 resmpt 5893 . . . . 5 (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥𝐷 ↦ (√‘𝑥)))
97, 8mp1i 13 . . . 4 (⊤ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥𝐷 ↦ (√‘𝑥)))
107sseli 3949 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℂ)
1110adantl 485 . . . . . . 7 ((⊤ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
12 cxpsqrt 25292 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
1311, 12syl 17 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
1413eqcomd 2830 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (√‘𝑥) = (𝑥𝑐(1 / 2)))
1514mpteq2dva 5148 . . . 4 (⊤ → (𝑥𝐷 ↦ (√‘𝑥)) = (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))))
164, 9, 153eqtrd 2863 . . 3 (⊤ → (√ ↾ 𝐷) = (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))))
17 eqid 2824 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1817cnfldtopon 23386 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1918a1i 11 . . . . . 6 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
20 resttopon 21764 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
2119, 7, 20sylancl 589 . . . . 5 (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
2221cnmptid 22264 . . . . 5 (⊤ → (𝑥𝐷𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t 𝐷)))
23 ax-1cn 10589 . . . . . . 7 1 ∈ ℂ
24 halfcl 11857 . . . . . . 7 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
2523, 24mp1i 13 . . . . . 6 (⊤ → (1 / 2) ∈ ℂ)
2621, 19, 25cnmptc 22265 . . . . 5 (⊤ → (𝑥𝐷 ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
27 eqid 2824 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
285, 17, 27cxpcn 25332 . . . . . 6 (𝑦𝐷, 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2928a1i 11 . . . . 5 (⊤ → (𝑦𝐷, 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
30 oveq12 7155 . . . . 5 ((𝑦 = 𝑥𝑧 = (1 / 2)) → (𝑦𝑐𝑧) = (𝑥𝑐(1 / 2)))
3121, 22, 26, 21, 19, 29, 30cnmpt12 22270 . . . 4 (⊤ → (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
32 ssid 3975 . . . . 5 ℂ ⊆ ℂ
3318toponrestid 21524 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3417, 27, 33cncfcn 23513 . . . . 5 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
357, 32, 34mp2an 691 . . . 4 (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
3631, 35eleqtrrdi 2927 . . 3 (⊤ → (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))) ∈ (𝐷cn→ℂ))
3716, 36eqeltrd 2916 . 2 (⊤ → (√ ↾ 𝐷) ∈ (𝐷cn→ℂ))
3837mptru 1545 1 (√ ↾ 𝐷) ∈ (𝐷cn→ℂ)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2115   ∖ cdif 3916   ⊆ wss 3919   ↦ cmpt 5133   ↾ cres 5545  ⟶wf 6340  ‘cfv 6344  (class class class)co 7146   ∈ cmpo 7148  ℂcc 10529  0cc0 10531  1c1 10532  -∞cmnf 10667   / cdiv 11291  2c2 11687  (,]cioc 12734  √csqrt 14590   ↾t crest 16692  TopOpenctopn 16693  ℂfldccnfld 20540  TopOnctopon 21513   Cn ccn 21827   ×t ctx 22163  –cn→ccncf 23479  ↑𝑐ccxp 25145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-fl 13164  df-mod 13240  df-seq 13372  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14424  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-limsup 14826  df-clim 14843  df-rlim 14844  df-sum 15041  df-ef 15419  df-sin 15421  df-cos 15422  df-tan 15423  df-pi 15424  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-hom 16587  df-cco 16588  df-rest 16694  df-topn 16695  df-0g 16713  df-gsum 16714  df-topgen 16715  df-pt 16716  df-prds 16719  df-xrs 16773  df-qtop 16778  df-imas 16779  df-xps 16781  df-mre 16855  df-mrc 16856  df-acs 16858  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-mulg 18223  df-cntz 18445  df-cmn 18906  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-fbas 20537  df-fg 20538  df-cnfld 20541  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468  df-log 25146  df-cxp 25147 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator