Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrtcn | Structured version Visualization version GIF version |
Description: Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
sqrcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
sqrtcn | ⊢ (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtf 15085 | . . . . . . 7 ⊢ √:ℂ⟶ℂ | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → √:ℂ⟶ℂ) |
3 | 2 | feqmptd 6829 | . . . . 5 ⊢ (⊤ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))) |
4 | 3 | reseq1d 5883 | . . . 4 ⊢ (⊤ → (√ ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷)) |
5 | sqrcn.d | . . . . . 6 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
6 | difss 4065 | . . . . . 6 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
7 | 5, 6 | eqsstri 3954 | . . . . 5 ⊢ 𝐷 ⊆ ℂ |
8 | resmpt 5938 | . . . . 5 ⊢ (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) | |
9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) |
10 | 7 | sseli 3916 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ℂ) |
12 | cxpsqrt 25868 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) |
14 | 13 | eqcomd 2744 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (√‘𝑥) = (𝑥↑𝑐(1 / 2))) |
15 | 14 | mpteq2dva 5173 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (√‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) |
16 | 4, 9, 15 | 3eqtrd 2782 | . . 3 ⊢ (⊤ → (√ ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) |
17 | eqid 2738 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | cnfldtopon 23956 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
20 | resttopon 22322 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) | |
21 | 19, 7, 20 | sylancl 586 | . . . . 5 ⊢ (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
22 | 21 | cnmptid 22822 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t 𝐷))) |
23 | ax-1cn 10939 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
24 | halfcl 12208 | . . . . . . 7 ⊢ (1 ∈ ℂ → (1 / 2) ∈ ℂ) | |
25 | 23, 24 | mp1i 13 | . . . . . 6 ⊢ (⊤ → (1 / 2) ∈ ℂ) |
26 | 21, 19, 25 | cnmptc 22823 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))) |
27 | eqid 2738 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷) | |
28 | 5, 17, 27 | cxpcn 25908 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷, 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ 𝐷, 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
30 | oveq12 7276 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = (1 / 2)) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐(1 / 2))) | |
31 | 21, 22, 26, 21, 19, 29, 30 | cnmpt12 22828 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))) |
32 | ssid 3942 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
33 | 18 | toponrestid 22080 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
34 | 17, 27, 33 | cncfcn 24083 | . . . . 5 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))) |
35 | 7, 32, 34 | mp2an 689 | . . . 4 ⊢ (𝐷–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)) |
36 | 31, 35 | eleqtrrdi 2850 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2))) ∈ (𝐷–cn→ℂ)) |
37 | 16, 36 | eqeltrd 2839 | . 2 ⊢ (⊤ → (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
38 | 37 | mptru 1546 | 1 ⊢ (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∖ cdif 3883 ⊆ wss 3886 ↦ cmpt 5156 ↾ cres 5586 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 ℂcc 10879 0cc0 10881 1c1 10882 -∞cmnf 11017 / cdiv 11642 2c2 12038 (,]cioc 13090 √csqrt 14954 ↾t crest 17141 TopOpenctopn 17142 ℂfldccnfld 20607 TopOnctopon 22069 Cn ccn 22385 ×t ctx 22721 –cn→ccncf 24049 ↑𝑐ccxp 25721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-fi 9157 df-sup 9188 df-inf 9189 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-q 12699 df-rp 12741 df-xneg 12858 df-xadd 12859 df-xmul 12860 df-ioo 13093 df-ioc 13094 df-ico 13095 df-icc 13096 df-fz 13250 df-fzo 13393 df-fl 13522 df-mod 13600 df-seq 13732 df-exp 13793 df-fac 13998 df-bc 14027 df-hash 14055 df-shft 14788 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-limsup 15190 df-clim 15207 df-rlim 15208 df-sum 15408 df-ef 15787 df-sin 15789 df-cos 15790 df-tan 15791 df-pi 15792 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-hom 16996 df-cco 16997 df-rest 17143 df-topn 17144 df-0g 17162 df-gsum 17163 df-topgen 17164 df-pt 17165 df-prds 17168 df-xrs 17223 df-qtop 17228 df-imas 17229 df-xps 17231 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-submnd 18441 df-mulg 18711 df-cntz 18933 df-cmn 19398 df-psmet 20599 df-xmet 20600 df-met 20601 df-bl 20602 df-mopn 20603 df-fbas 20604 df-fg 20605 df-cnfld 20608 df-top 22053 df-topon 22070 df-topsp 22092 df-bases 22106 df-cld 22180 df-ntr 22181 df-cls 22182 df-nei 22259 df-lp 22297 df-perf 22298 df-cn 22388 df-cnp 22389 df-haus 22476 df-cmp 22548 df-tx 22723 df-hmeo 22916 df-fil 23007 df-fm 23099 df-flim 23100 df-flf 23101 df-xms 23483 df-ms 23484 df-tms 23485 df-cncf 24051 df-limc 25040 df-dv 25041 df-log 25722 df-cxp 25723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |