![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcncf | Structured version Visualization version GIF version |
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) Avoid ax-mulf 11233. (Revised by GG, 16-Mar-2025.) |
Ref | Expression |
---|---|
mulcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
mulcncf.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
mulcncf | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtopon 24819 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
3 | mulcncf.1 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
4 | cncfrss 24931 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → 𝑋 ⊆ ℂ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
6 | resttopon 23185 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) | |
7 | 2, 5, 6 | sylancr 587 | . . 3 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) |
8 | ssid 4018 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
9 | eqid 2735 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) | |
10 | 2 | toponrestid 22943 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
11 | 1, 9, 10 | cncfcn 24950 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
12 | 5, 8, 11 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑋–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
13 | 3, 12 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
14 | mulcncf.2 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | |
15 | 14, 12 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
16 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
17 | 1 | mpomulcn 24905 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
19 | oveq12 7440 | . . 3 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢 · 𝑣) = (𝐴 · 𝐵)) | |
20 | 7, 13, 15, 16, 16, 18, 19 | cnmpt12 23691 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
21 | 20, 12 | eleqtrrd 2842 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11151 · cmul 11158 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 TopOnctopon 22932 Cn ccn 23248 ×t ctx 23584 –cn→ccncf 24916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-cnp 23252 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 |
This theorem is referenced by: divcncf 25496 dvlipcn 26048 dvfsumabs 26078 itgparts 26103 itgsubstlem 26104 itgpowd 26106 lgamgulmlem2 27088 pntlem3 27668 efmul2picn 34590 circlemeth 34634 logdivsqrle 34644 ftc1cnnclem 37678 ftc2nc 37689 areacirclem3 37697 areacirclem4 37698 areacirc 37700 3factsumint3 42005 lcmineqlem10 42020 lcmineqlem12 42022 areaquad 43205 mulcncff 45826 fprodcncf 45856 itgsinexplem1 45910 itgcoscmulx 45925 itgsincmulx 45930 dirkercncflem2 46060 dirkercncflem4 46062 fourierdlem16 46079 fourierdlem18 46081 fourierdlem21 46084 fourierdlem22 46085 fourierdlem39 46102 fourierdlem40 46103 fourierdlem62 46124 fourierdlem68 46130 fourierdlem73 46135 fourierdlem76 46138 fourierdlem78 46140 fourierdlem83 46145 fourierdlem84 46146 fourierdlem101 46163 fourierdlem111 46173 sqwvfoura 46184 sqwvfourb 46185 etransclem18 46208 etransclem22 46212 etransclem34 46224 etransclem46 46236 |
Copyright terms: Public domain | W3C validator |