![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcncf | Structured version Visualization version GIF version |
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
mulcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
mulcncf.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
mulcncf | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . 2 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | mulcn 23040 | . . 3 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
4 | mulcncf.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
5 | mulcncf.2 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | |
6 | 1, 3, 4, 5 | cncfmpt2f 23087 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 ↦ cmpt 4952 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 · cmul 10257 TopOpenctopn 16435 ℂfldccnfld 20106 Cn ccn 21399 ×t ctx 21734 –cn→ccncf 23049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-mulf 10332 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-fi 8586 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-z 11705 df-dec 11822 df-uz 11969 df-q 12072 df-rp 12113 df-xneg 12232 df-xadd 12233 df-xmul 12234 df-icc 12470 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-starv 16320 df-sca 16321 df-vsca 16322 df-ip 16323 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-hom 16329 df-cco 16330 df-rest 16436 df-topn 16437 df-0g 16455 df-gsum 16456 df-topgen 16457 df-pt 16458 df-prds 16461 df-xrs 16515 df-qtop 16520 df-imas 16521 df-xps 16523 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-submnd 17689 df-mulg 17895 df-cntz 18100 df-cmn 18548 df-psmet 20098 df-xmet 20099 df-met 20100 df-bl 20101 df-mopn 20102 df-cnfld 20107 df-top 21069 df-topon 21086 df-topsp 21108 df-bases 21121 df-cn 21402 df-cnp 21403 df-tx 21736 df-hmeo 21929 df-xms 22495 df-ms 22496 df-tms 22497 df-cncf 23051 |
This theorem is referenced by: divcncf 23613 dvlipcn 24156 dvfsumabs 24185 itgparts 24209 itgsubstlem 24210 lgamgulmlem2 25169 pntlem3 25711 efmul2picn 31223 circlemeth 31267 logdivsqrle 31277 ftc1cnnclem 34026 ftc2nc 34037 areacirclem3 34045 areacirclem4 34046 areacirc 34048 itgpowd 38642 areaquad 38644 mulcncff 40876 fprodcncf 40909 itgsinexplem1 40964 itgcoscmulx 40979 itgsincmulx 40984 dirkercncflem2 41115 dirkercncflem4 41117 fourierdlem16 41134 fourierdlem18 41136 fourierdlem21 41139 fourierdlem22 41140 fourierdlem39 41157 fourierdlem40 41158 fourierdlem62 41179 fourierdlem68 41185 fourierdlem73 41190 fourierdlem76 41193 fourierdlem78 41195 fourierdlem83 41200 fourierdlem84 41201 fourierdlem101 41218 fourierdlem111 41228 sqwvfoura 41239 sqwvfourb 41240 etransclem18 41263 etransclem22 41267 etransclem34 41279 etransclem46 41291 |
Copyright terms: Public domain | W3C validator |