| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcncf | Structured version Visualization version GIF version | ||
| Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) Avoid ax-mulf 11108. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
| mulcncf.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
| Ref | Expression |
|---|---|
| mulcncf | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtopon 24686 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 3 | mulcncf.1 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
| 4 | cncfrss 24800 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → 𝑋 ⊆ ℂ) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | resttopon 23064 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) | |
| 7 | 2, 5, 6 | sylancr 587 | . . 3 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) |
| 8 | ssid 3960 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 9 | eqid 2729 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) | |
| 10 | 2 | toponrestid 22824 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 11 | 1, 9, 10 | cncfcn 24819 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
| 12 | 5, 8, 11 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑋–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
| 13 | 3, 12 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
| 14 | mulcncf.2 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | |
| 15 | 14, 12 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
| 16 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 17 | 1 | mpomulcn 24774 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 19 | oveq12 7362 | . . 3 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢 · 𝑣) = (𝐴 · 𝐵)) | |
| 20 | 7, 13, 15, 16, 16, 18, 19 | cnmpt12 23570 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (((TopOpen‘ℂfld) ↾t 𝑋) Cn (TopOpen‘ℂfld))) |
| 21 | 20, 12 | eleqtrrd 2831 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℂcc 11026 · cmul 11033 ↾t crest 17342 TopOpenctopn 17343 ℂfldccnfld 21279 TopOnctopon 22813 Cn ccn 23127 ×t ctx 23463 –cn→ccncf 24785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 |
| This theorem is referenced by: divcncf 25364 dvlipcn 25915 dvfsumabs 25945 itgparts 25970 itgsubstlem 25971 itgpowd 25973 lgamgulmlem2 26956 pntlem3 27536 efmul2picn 34563 circlemeth 34607 logdivsqrle 34617 ftc1cnnclem 37670 ftc2nc 37681 areacirclem3 37689 areacirclem4 37690 areacirc 37692 3factsumint3 41996 lcmineqlem10 42011 lcmineqlem12 42013 areaquad 43189 mulcncff 45852 fprodcncf 45882 itgsinexplem1 45936 itgcoscmulx 45951 itgsincmulx 45956 dirkercncflem2 46086 dirkercncflem4 46088 fourierdlem16 46105 fourierdlem18 46107 fourierdlem21 46110 fourierdlem22 46111 fourierdlem39 46128 fourierdlem40 46129 fourierdlem62 46150 fourierdlem68 46156 fourierdlem73 46161 fourierdlem76 46164 fourierdlem78 46166 fourierdlem83 46171 fourierdlem84 46172 fourierdlem101 46189 fourierdlem111 46199 sqwvfoura 46210 sqwvfourb 46211 etransclem18 46234 etransclem22 46238 etransclem34 46250 etransclem46 46262 |
| Copyright terms: Public domain | W3C validator |