| Step | Hyp | Ref
| Expression |
| 1 | | sqrtf 15402 |
. . . . . . 7
⊢
√:ℂ⟶ℂ |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ (⊤
→ √:ℂ⟶ℂ) |
| 3 | 2 | feqmptd 6977 |
. . . . 5
⊢ (⊤
→ √ = (𝑥 ∈
ℂ ↦ (√‘𝑥))) |
| 4 | 3 | reseq1d 5996 |
. . . 4
⊢ (⊤
→ (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾
(0[,)+∞))) |
| 5 | | elrege0 13494 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥)) |
| 6 | 5 | simplbi 497 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) →
𝑥 ∈
ℝ) |
| 7 | 6 | recnd 11289 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) →
𝑥 ∈
ℂ) |
| 8 | 7 | ssriv 3987 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℂ |
| 9 | | resmpt 6055 |
. . . . 5
⊢
((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) =
(𝑥 ∈ (0[,)+∞)
↦ (√‘𝑥))) |
| 10 | 8, 9 | mp1i 13 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈ ℂ
↦ (√‘𝑥))
↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥))) |
| 11 | 4, 10 | eqtrd 2777 |
. . 3
⊢ (⊤
→ (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥))) |
| 12 | 11 | mptru 1547 |
. 2
⊢ (√
↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
| 13 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
| 14 | | resqrtcl 15292 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(√‘𝑥) ∈
ℝ) |
| 15 | 5, 14 | sylbi 217 |
. . . 4
⊢ (𝑥 ∈ (0[,)+∞) →
(√‘𝑥) ∈
ℝ) |
| 16 | 13, 15 | fmpti 7132 |
. . 3
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)):(0[,)+∞)⟶ℝ |
| 17 | | ax-resscn 11212 |
. . . 4
⊢ ℝ
⊆ ℂ |
| 18 | | cxpsqrt 26745 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 /
2)) = (√‘𝑥)) |
| 19 | 7, 18 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) →
(𝑥↑𝑐(1 / 2)) =
(√‘𝑥)) |
| 20 | 19 | mpteq2ia 5245 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) ↦
(𝑥↑𝑐(1 / 2))) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
| 21 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 22 | 21 | cnfldtopon 24803 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 24 | | resttopon 23169 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (0[,)+∞) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (0[,)+∞))
∈ (TopOn‘(0[,)+∞))) |
| 25 | 23, 8, 24 | sylancl 586 |
. . . . . . . 8
⊢ (⊤
→ ((TopOpen‘ℂfld) ↾t
(0[,)+∞)) ∈ (TopOn‘(0[,)+∞))) |
| 26 | 25 | cnmptid 23669 |
. . . . . . . 8
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ 𝑥)
∈ (((TopOpen‘ℂfld) ↾t
(0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t
(0[,)+∞)))) |
| 27 | | cnvimass 6100 |
. . . . . . . . . . 11
⊢ (◡ℜ “ ℝ+) ⊆
dom ℜ |
| 28 | | ref 15151 |
. . . . . . . . . . . 12
⊢
ℜ:ℂ⟶ℝ |
| 29 | 28 | fdmi 6747 |
. . . . . . . . . . 11
⊢ dom
ℜ = ℂ |
| 30 | 27, 29 | sseqtri 4032 |
. . . . . . . . . 10
⊢ (◡ℜ “ ℝ+) ⊆
ℂ |
| 31 | | resttopon 23169 |
. . . . . . . . . 10
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (◡ℜ “
ℝ+) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (◡ℜ “ ℝ+)) ∈
(TopOn‘(◡ℜ “
ℝ+))) |
| 32 | 23, 30, 31 | sylancl 586 |
. . . . . . . . 9
⊢ (⊤
→ ((TopOpen‘ℂfld) ↾t (◡ℜ “ ℝ+)) ∈
(TopOn‘(◡ℜ “
ℝ+))) |
| 33 | | halfcn 12481 |
. . . . . . . . . . 11
⊢ (1 / 2)
∈ ℂ |
| 34 | | 1rp 13038 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ+ |
| 35 | | rphalfcl 13062 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ+ |
| 37 | | rpre 13043 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
∈ ℝ+ → (1 / 2) ∈ ℝ) |
| 38 | | rere 15161 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
∈ ℝ → (ℜ‘(1 / 2)) = (1 / 2)) |
| 39 | 36, 37, 38 | mp2b 10 |
. . . . . . . . . . . 12
⊢
(ℜ‘(1 / 2)) = (1 / 2) |
| 40 | 39, 36 | eqeltri 2837 |
. . . . . . . . . . 11
⊢
(ℜ‘(1 / 2)) ∈ ℝ+ |
| 41 | | ffn 6736 |
. . . . . . . . . . . 12
⊢
(ℜ:ℂ⟶ℝ → ℜ Fn
ℂ) |
| 42 | | elpreima 7078 |
. . . . . . . . . . . 12
⊢ (ℜ
Fn ℂ → ((1 / 2) ∈ (◡ℜ “ ℝ+) ↔
((1 / 2) ∈ ℂ ∧ (ℜ‘(1 / 2)) ∈
ℝ+))) |
| 43 | 28, 41, 42 | mp2b 10 |
. . . . . . . . . . 11
⊢ ((1 / 2)
∈ (◡ℜ “
ℝ+) ↔ ((1 / 2) ∈ ℂ ∧ (ℜ‘(1 /
2)) ∈ ℝ+)) |
| 44 | 33, 40, 43 | mpbir2an 711 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ (◡ℜ “
ℝ+) |
| 45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (1 / 2) ∈ (◡ℜ “
ℝ+)) |
| 46 | 25, 32, 45 | cnmptc 23670 |
. . . . . . . 8
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld)
↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld)
↾t (◡ℜ “
ℝ+)))) |
| 47 | | eqid 2737 |
. . . . . . . . . 10
⊢ (◡ℜ “ ℝ+) = (◡ℜ “
ℝ+) |
| 48 | | eqid 2737 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t
(0[,)+∞)) = ((TopOpen‘ℂfld) ↾t
(0[,)+∞)) |
| 49 | | eqid 2737 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t (◡ℜ “ ℝ+)) =
((TopOpen‘ℂfld) ↾t (◡ℜ “
ℝ+)) |
| 50 | 47, 21, 48, 49 | cxpcn3 26791 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)+∞), 𝑧 ∈ (◡ℜ “ ℝ+) ↦
(𝑦↑𝑐𝑧)) ∈
((((TopOpen‘ℂfld) ↾t (0[,)+∞))
×t ((TopOpen‘ℂfld) ↾t
(◡ℜ “ ℝ+)))
Cn (TopOpen‘ℂfld)) |
| 51 | 50 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ (𝑦 ∈
(0[,)+∞), 𝑧 ∈
(◡ℜ “ ℝ+)
↦ (𝑦↑𝑐𝑧)) ∈
((((TopOpen‘ℂfld) ↾t (0[,)+∞))
×t ((TopOpen‘ℂfld) ↾t
(◡ℜ “ ℝ+)))
Cn (TopOpen‘ℂfld))) |
| 52 | | oveq12 7440 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = (1 / 2)) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐(1 /
2))) |
| 53 | 25, 26, 46, 25, 32, 51, 52 | cnmpt12 23675 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (𝑥↑𝑐(1 / 2))) ∈
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
(TopOpen‘ℂfld))) |
| 54 | | ssid 4006 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
| 55 | 22 | toponrestid 22927 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 56 | 21, 48, 55 | cncfcn 24936 |
. . . . . . . 8
⊢
(((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) →
((0[,)+∞)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
(TopOpen‘ℂfld))) |
| 57 | 8, 54, 56 | mp2an 692 |
. . . . . . 7
⊢
((0[,)+∞)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
(TopOpen‘ℂfld)) |
| 58 | 53, 57 | eleqtrrdi 2852 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (𝑥↑𝑐(1 / 2))) ∈
((0[,)+∞)–cn→ℂ)) |
| 59 | 20, 58 | eqeltrrid 2846 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ)) |
| 60 | 59 | mptru 1547 |
. . . 4
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℂ) |
| 61 | | cncfcdm 24924 |
. . . 4
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ)) → ((𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℝ)
↔ (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ)) |
| 62 | 17, 60, 61 | mp2an 692 |
. . 3
⊢ ((𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℝ)
↔ (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ) |
| 63 | 16, 62 | mpbir 231 |
. 2
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℝ) |
| 64 | 12, 63 | eqeltri 2837 |
1
⊢ (√
↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) |