Step | Hyp | Ref
| Expression |
1 | | sqrtf 15003 |
. . . . . . 7
⊢
√:ℂ⟶ℂ |
2 | 1 | a1i 11 |
. . . . . 6
⊢ (⊤
→ √:ℂ⟶ℂ) |
3 | 2 | feqmptd 6819 |
. . . . 5
⊢ (⊤
→ √ = (𝑥 ∈
ℂ ↦ (√‘𝑥))) |
4 | 3 | reseq1d 5879 |
. . . 4
⊢ (⊤
→ (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾
(0[,)+∞))) |
5 | | elrege0 13115 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥)) |
6 | 5 | simplbi 497 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) →
𝑥 ∈
ℝ) |
7 | 6 | recnd 10934 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) →
𝑥 ∈
ℂ) |
8 | 7 | ssriv 3921 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℂ |
9 | | resmpt 5934 |
. . . . 5
⊢
((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) =
(𝑥 ∈ (0[,)+∞)
↦ (√‘𝑥))) |
10 | 8, 9 | mp1i 13 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈ ℂ
↦ (√‘𝑥))
↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥))) |
11 | 4, 10 | eqtrd 2778 |
. . 3
⊢ (⊤
→ (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥))) |
12 | 11 | mptru 1546 |
. 2
⊢ (√
↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
13 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
14 | | resqrtcl 14893 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(√‘𝑥) ∈
ℝ) |
15 | 5, 14 | sylbi 216 |
. . . 4
⊢ (𝑥 ∈ (0[,)+∞) →
(√‘𝑥) ∈
ℝ) |
16 | 13, 15 | fmpti 6968 |
. . 3
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)):(0[,)+∞)⟶ℝ |
17 | | ax-resscn 10859 |
. . . 4
⊢ ℝ
⊆ ℂ |
18 | | cxpsqrt 25763 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 /
2)) = (√‘𝑥)) |
19 | 7, 18 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) →
(𝑥↑𝑐(1 / 2)) =
(√‘𝑥)) |
20 | 19 | mpteq2ia 5173 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) ↦
(𝑥↑𝑐(1 / 2))) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
21 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
22 | 21 | cnfldtopon 23852 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
24 | | resttopon 22220 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (0[,)+∞) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (0[,)+∞))
∈ (TopOn‘(0[,)+∞))) |
25 | 23, 8, 24 | sylancl 585 |
. . . . . . . 8
⊢ (⊤
→ ((TopOpen‘ℂfld) ↾t
(0[,)+∞)) ∈ (TopOn‘(0[,)+∞))) |
26 | 25 | cnmptid 22720 |
. . . . . . . 8
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ 𝑥)
∈ (((TopOpen‘ℂfld) ↾t
(0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t
(0[,)+∞)))) |
27 | | cnvimass 5978 |
. . . . . . . . . . 11
⊢ (◡ℜ “ ℝ+) ⊆
dom ℜ |
28 | | ref 14751 |
. . . . . . . . . . . 12
⊢
ℜ:ℂ⟶ℝ |
29 | 28 | fdmi 6596 |
. . . . . . . . . . 11
⊢ dom
ℜ = ℂ |
30 | 27, 29 | sseqtri 3953 |
. . . . . . . . . 10
⊢ (◡ℜ “ ℝ+) ⊆
ℂ |
31 | | resttopon 22220 |
. . . . . . . . . 10
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (◡ℜ “
ℝ+) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (◡ℜ “ ℝ+)) ∈
(TopOn‘(◡ℜ “
ℝ+))) |
32 | 23, 30, 31 | sylancl 585 |
. . . . . . . . 9
⊢ (⊤
→ ((TopOpen‘ℂfld) ↾t (◡ℜ “ ℝ+)) ∈
(TopOn‘(◡ℜ “
ℝ+))) |
33 | | halfcn 12118 |
. . . . . . . . . . 11
⊢ (1 / 2)
∈ ℂ |
34 | | 1rp 12663 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ+ |
35 | | rphalfcl 12686 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ+ |
37 | | rpre 12667 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
∈ ℝ+ → (1 / 2) ∈ ℝ) |
38 | | rere 14761 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
∈ ℝ → (ℜ‘(1 / 2)) = (1 / 2)) |
39 | 36, 37, 38 | mp2b 10 |
. . . . . . . . . . . 12
⊢
(ℜ‘(1 / 2)) = (1 / 2) |
40 | 39, 36 | eqeltri 2835 |
. . . . . . . . . . 11
⊢
(ℜ‘(1 / 2)) ∈ ℝ+ |
41 | | ffn 6584 |
. . . . . . . . . . . 12
⊢
(ℜ:ℂ⟶ℝ → ℜ Fn
ℂ) |
42 | | elpreima 6917 |
. . . . . . . . . . . 12
⊢ (ℜ
Fn ℂ → ((1 / 2) ∈ (◡ℜ “ ℝ+) ↔
((1 / 2) ∈ ℂ ∧ (ℜ‘(1 / 2)) ∈
ℝ+))) |
43 | 28, 41, 42 | mp2b 10 |
. . . . . . . . . . 11
⊢ ((1 / 2)
∈ (◡ℜ “
ℝ+) ↔ ((1 / 2) ∈ ℂ ∧ (ℜ‘(1 /
2)) ∈ ℝ+)) |
44 | 33, 40, 43 | mpbir2an 707 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ (◡ℜ “
ℝ+) |
45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (1 / 2) ∈ (◡ℜ “
ℝ+)) |
46 | 25, 32, 45 | cnmptc 22721 |
. . . . . . . 8
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld)
↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld)
↾t (◡ℜ “
ℝ+)))) |
47 | | eqid 2738 |
. . . . . . . . . 10
⊢ (◡ℜ “ ℝ+) = (◡ℜ “
ℝ+) |
48 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t
(0[,)+∞)) = ((TopOpen‘ℂfld) ↾t
(0[,)+∞)) |
49 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t (◡ℜ “ ℝ+)) =
((TopOpen‘ℂfld) ↾t (◡ℜ “
ℝ+)) |
50 | 47, 21, 48, 49 | cxpcn3 25806 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)+∞), 𝑧 ∈ (◡ℜ “ ℝ+) ↦
(𝑦↑𝑐𝑧)) ∈
((((TopOpen‘ℂfld) ↾t (0[,)+∞))
×t ((TopOpen‘ℂfld) ↾t
(◡ℜ “ ℝ+)))
Cn (TopOpen‘ℂfld)) |
51 | 50 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ (𝑦 ∈
(0[,)+∞), 𝑧 ∈
(◡ℜ “ ℝ+)
↦ (𝑦↑𝑐𝑧)) ∈
((((TopOpen‘ℂfld) ↾t (0[,)+∞))
×t ((TopOpen‘ℂfld) ↾t
(◡ℜ “ ℝ+)))
Cn (TopOpen‘ℂfld))) |
52 | | oveq12 7264 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = (1 / 2)) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐(1 /
2))) |
53 | 25, 26, 46, 25, 32, 51, 52 | cnmpt12 22726 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (𝑥↑𝑐(1 / 2))) ∈
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
(TopOpen‘ℂfld))) |
54 | | ssid 3939 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
55 | 22 | toponrestid 21978 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
56 | 21, 48, 55 | cncfcn 23979 |
. . . . . . . 8
⊢
(((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) →
((0[,)+∞)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
(TopOpen‘ℂfld))) |
57 | 8, 54, 56 | mp2an 688 |
. . . . . . 7
⊢
((0[,)+∞)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
(TopOpen‘ℂfld)) |
58 | 53, 57 | eleqtrrdi 2850 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (𝑥↑𝑐(1 / 2))) ∈
((0[,)+∞)–cn→ℂ)) |
59 | 20, 58 | eqeltrrid 2844 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ)) |
60 | 59 | mptru 1546 |
. . . 4
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℂ) |
61 | | cncffvrn 23967 |
. . . 4
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ)) → ((𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℝ)
↔ (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ)) |
62 | 17, 60, 61 | mp2an 688 |
. . 3
⊢ ((𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℝ)
↔ (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ) |
63 | 16, 62 | mpbir 230 |
. 2
⊢ (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) ∈
((0[,)+∞)–cn→ℝ) |
64 | 12, 63 | eqeltri 2835 |
1
⊢ (√
↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) |