| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iihalf1cn | Structured version Visualization version GIF version | ||
| Description: The first half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) Avoid ax-mulf 11217. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| iihalf1cn.1 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
| Ref | Expression |
|---|---|
| iihalf1cn | ⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | iihalf1cn.1 | . . 3 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t (0[,](1 / 2))) | |
| 3 | dfii2 24845 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
| 4 | 0red 11246 | . . . 4 ⊢ (⊤ → 0 ∈ ℝ) | |
| 5 | halfre 12462 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 6 | iccssre 13451 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ) | |
| 7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ (⊤ → (0[,](1 / 2)) ⊆ ℝ) |
| 8 | unitssre 13521 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → (0[,]1) ⊆ ℝ) |
| 10 | iihalf1 24895 | . . . 4 ⊢ (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1)) | |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (0[,](1 / 2))) → (2 · 𝑥) ∈ (0[,]1)) |
| 12 | 1 | cnfldtopon 24740 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 14 | 2cnd 12326 | . . . . 5 ⊢ (⊤ → 2 ∈ ℂ) | |
| 15 | 13, 13, 14 | cnmptc 23617 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 16 | 13 | cnmptid 23616 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 17 | 1 | mpomulcn 24828 | . . . . 5 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 19 | oveq12 7422 | . . . 4 ⊢ ((𝑢 = 2 ∧ 𝑣 = 𝑥) → (𝑢 · 𝑣) = (2 · 𝑥)) | |
| 20 | 13, 15, 16, 13, 13, 18, 19 | cnmpt12 23622 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (2 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 21 | 1, 2, 3, 7, 9, 11, 20 | cnmptre 24891 | . 2 ⊢ (⊤ → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II)) |
| 22 | 21 | mptru 1546 | 1 ⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ⊆ wss 3931 ↦ cmpt 5205 ran crn 5666 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ℂcc 11135 ℝcr 11136 0cc0 11137 1c1 11138 · cmul 11142 / cdiv 11902 2c2 12303 (,)cioo 13369 [,]cicc 13372 ↾t crest 17437 TopOpenctopn 17438 topGenctg 17454 ℂfldccnfld 21327 TopOnctopon 22865 Cn ccn 23179 ×t ctx 23515 IIcii 24838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-icc 13376 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19769 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-cnfld 21328 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-cn 23182 df-cnp 23183 df-tx 23517 df-hmeo 23710 df-xms 24276 df-ms 24277 df-tms 24278 df-ii 24840 |
| This theorem is referenced by: htpycc 24949 pcocn 24987 pcohtpylem 24989 pcopt2 24993 pcoass 24994 pcorevlem 24996 |
| Copyright terms: Public domain | W3C validator |