MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf1cn Structured version   Visualization version   GIF version

Theorem iihalf1cn 24914
Description: The first half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) Avoid ax-mulf 11225. (Revised by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
iihalf1cn.1 𝐽 = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
Assertion
Ref Expression
iihalf1cn (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II)

Proof of Theorem iihalf1cn
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 iihalf1cn.1 . . 3 𝐽 = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
3 dfii2 24863 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4 0red 11254 . . . 4 (⊤ → 0 ∈ ℝ)
5 halfre 12464 . . . 4 (1 / 2) ∈ ℝ
6 iccssre 13446 . . . 4 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
74, 5, 6sylancl 584 . . 3 (⊤ → (0[,](1 / 2)) ⊆ ℝ)
8 unitssre 13516 . . . 4 (0[,]1) ⊆ ℝ
98a1i 11 . . 3 (⊤ → (0[,]1) ⊆ ℝ)
10 iihalf1 24913 . . . 4 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
1110adantl 480 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,](1 / 2))) → (2 · 𝑥) ∈ (0[,]1))
121cnfldtopon 24760 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1312a1i 11 . . . 4 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
14 2cnd 12328 . . . . 5 (⊤ → 2 ∈ ℂ)
1513, 13, 14cnmptc 23627 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1613cnmptid 23626 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
171mpomulcn 24846 . . . . 5 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1817a1i 11 . . . 4 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
19 oveq12 7428 . . . 4 ((𝑢 = 2 ∧ 𝑣 = 𝑥) → (𝑢 · 𝑣) = (2 · 𝑥))
2013, 15, 16, 13, 13, 18, 19cnmpt12 23632 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ (2 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
211, 2, 3, 7, 9, 11, 20cnmptre 24909 . 2 (⊤ → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II))
2221mptru 1540 1 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wtru 1534  wcel 2098  wss 3944  cmpt 5232  ran crn 5679  cfv 6549  (class class class)co 7419  cmpo 7421  cc 11143  cr 11144  0cc0 11145  1c1 11146   · cmul 11150   / cdiv 11908  2c2 12305  (,)cioo 13364  [,]cicc 13367  t crest 17421  TopOpenctopn 17422  topGenctg 17438  fldccnfld 21313  TopOnctopon 22873   Cn ccn 23189   ×t ctx 23525  IIcii 24856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-icc 13371  df-fz 13525  df-fzo 13668  df-seq 14008  df-exp 14068  df-hash 14334  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-hom 17276  df-cco 17277  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-submnd 18760  df-mulg 19048  df-cntz 19297  df-cmn 19766  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22857  df-topon 22874  df-topsp 22896  df-bases 22910  df-cn 23192  df-cnp 23193  df-tx 23527  df-hmeo 23720  df-xms 24287  df-ms 24288  df-tms 24289  df-ii 24858
This theorem is referenced by:  htpycc  24967  pcocn  25005  pcohtpylem  25007  pcopt2  25011  pcoass  25012  pcorevlem  25014
  Copyright terms: Public domain W3C validator