| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iihalf2cn | Structured version Visualization version GIF version | ||
| Description: The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) Avoid ax-mulf 11155. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| iihalf2cn.1 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
| Ref | Expression |
|---|---|
| iihalf2cn | ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | iihalf2cn.1 | . . 3 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) | |
| 3 | dfii2 24782 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
| 4 | halfre 12402 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 5 | 1red 11182 | . . . 4 ⊢ (⊤ → 1 ∈ ℝ) | |
| 6 | iccssre 13397 | . . . 4 ⊢ (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ) | |
| 7 | 4, 5, 6 | sylancr 587 | . . 3 ⊢ (⊤ → ((1 / 2)[,]1) ⊆ ℝ) |
| 8 | unitssre 13467 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → (0[,]1) ⊆ ℝ) |
| 10 | iihalf2 24835 | . . . 4 ⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1)) | |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((2 · 𝑥) − 1) ∈ (0[,]1)) |
| 12 | 1 | cnfldtopon 24677 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 14 | 2cnd 12271 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℂ) | |
| 15 | 13, 13, 14 | cnmptc 23556 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 16 | 13 | cnmptid 23555 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 17 | 1 | mpomulcn 24765 | . . . . . 6 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 19 | oveq12 7399 | . . . . 5 ⊢ ((𝑢 = 2 ∧ 𝑣 = 𝑥) → (𝑢 · 𝑣) = (2 · 𝑥)) | |
| 20 | 13, 15, 16, 13, 13, 18, 19 | cnmpt12 23561 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (2 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 21 | 1cnd 11176 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
| 22 | 13, 13, 21 | cnmptc 23556 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 23 | 1 | subcn 24762 | . . . . 5 ⊢ − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 25 | 13, 20, 22, 24 | cnmpt12f 23560 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) − 1)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 26 | 1, 2, 3, 7, 9, 11, 25 | cnmptre 24828 | . 2 ⊢ (⊤ → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II)) |
| 27 | 26 | mptru 1547 | 1 ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 − cmin 11412 / cdiv 11842 2c2 12248 (,)cioo 13313 [,]cicc 13316 ↾t crest 17390 TopOpenctopn 17391 topGenctg 17407 ℂfldccnfld 21271 TopOnctopon 22804 Cn ccn 23118 ×t ctx 23454 IIcii 24775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-ii 24777 |
| This theorem is referenced by: htpycc 24886 pcocn 24924 pcohtpylem 24926 pcopt 24929 pcorevlem 24933 |
| Copyright terms: Public domain | W3C validator |