![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cxpcncf1 | Structured version Visualization version GIF version |
Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 26653. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
cxpcncf1.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpcncf1.d | ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) |
Ref | Expression |
---|---|
cxpcncf1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxpcncf1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) | |
2 | resmpt 6035 | . . 3 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) |
4 | eqid 2727 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopon 24673 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
6 | difss 4127 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
7 | resttopon 23039 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) | |
8 | 5, 6, 7 | mp2an 691 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) |
10 | 9 | cnmptid 23539 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))))) |
11 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
12 | cxpcncf1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
13 | 9, 11, 12 | cnmptc 23540 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
14 | eqid 2727 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
15 | eqid 2727 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) | |
16 | 14, 4, 15 | cxpcn 26653 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
18 | oveq12 7423 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐴) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐𝐴)) | |
19 | 9, 10, 13, 9, 11, 17, 18 | cnmpt12 23545 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
20 | ssid 4000 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
21 | 5 | toponrestid 22797 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
22 | 4, 15, 21 | cncfcn 24804 | . . . . . . 7 ⊢ (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
23 | 6, 20, 22 | mp2an 691 | . . . . . 6 ⊢ ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) |
24 | 23 | eqcomi 2736 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ) |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
26 | 19, 25 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
27 | rescncf 24791 | . . . 4 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ))) | |
28 | 27 | imp 406 | . . 3 ⊢ ((𝐷 ⊆ (ℂ ∖ (-∞(,]0)) ∧ (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
29 | 1, 26, 28 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
30 | 3, 29 | eqeltrrd 2829 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3941 ⊆ wss 3944 ↦ cmpt 5225 ↾ cres 5674 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ℂcc 11122 0cc0 11124 -∞cmnf 11262 (,]cioc 13343 ↾t crest 17387 TopOpenctopn 17388 ℂfldccnfld 21259 TopOnctopon 22786 Cn ccn 23102 ×t ctx 23438 –cn→ccncf 24770 ↑𝑐ccxp 26463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-fi 9420 df-sup 9451 df-inf 9452 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-ioo 13346 df-ioc 13347 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-seq 13985 df-exp 14045 df-fac 14251 df-bc 14280 df-hash 14308 df-shft 15032 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-limsup 15433 df-clim 15450 df-rlim 15451 df-sum 15651 df-ef 16029 df-sin 16031 df-cos 16032 df-tan 16033 df-pi 16034 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-starv 17233 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-unif 17241 df-hom 17242 df-cco 17243 df-rest 17389 df-topn 17390 df-0g 17408 df-gsum 17409 df-topgen 17410 df-pt 17411 df-prds 17414 df-xrs 17469 df-qtop 17474 df-imas 17475 df-xps 17477 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-mulg 19008 df-cntz 19252 df-cmn 19721 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-fbas 21256 df-fg 21257 df-cnfld 21260 df-top 22770 df-topon 22787 df-topsp 22809 df-bases 22823 df-cld 22897 df-ntr 22898 df-cls 22899 df-nei 22976 df-lp 23014 df-perf 23015 df-cn 23105 df-cnp 23106 df-haus 23193 df-cmp 23265 df-tx 23440 df-hmeo 23633 df-fil 23724 df-fm 23816 df-flim 23817 df-flf 23818 df-xms 24200 df-ms 24201 df-tms 24202 df-cncf 24772 df-limc 25769 df-dv 25770 df-log 26464 df-cxp 26465 |
This theorem is referenced by: logdivsqrle 34205 |
Copyright terms: Public domain | W3C validator |