Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cxpcncf1 Structured version   Visualization version   GIF version

Theorem cxpcncf1 32475
Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 25803. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
cxpcncf1.a (𝜑𝐴 ∈ ℂ)
cxpcncf1.d (𝜑𝐷 ⊆ (ℂ ∖ (-∞(,]0)))
Assertion
Ref Expression
cxpcncf1 (𝜑 → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥

Proof of Theorem cxpcncf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cxpcncf1.d . . 3 (𝜑𝐷 ⊆ (ℂ ∖ (-∞(,]0)))
2 resmpt 5934 . . 3 (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) = (𝑥𝐷 ↦ (𝑥𝑐𝐴)))
31, 2syl 17 . 2 (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) = (𝑥𝐷 ↦ (𝑥𝑐𝐴)))
4 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54cnfldtopon 23852 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
6 difss 4062 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
7 resttopon 22220 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))))
85, 6, 7mp2an 688 . . . . . 6 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))
98a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))))
109cnmptid 22720 . . . . 5 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
115a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 cxpcncf1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
139, 11, 12cnmptc 22721 . . . . 5 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)))
14 eqid 2738 . . . . . . 7 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
15 eqid 2738 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
1614, 4, 15cxpcn 25803 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1716a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
18 oveq12 7264 . . . . 5 ((𝑦 = 𝑥𝑧 = 𝐴) → (𝑦𝑐𝑧) = (𝑥𝑐𝐴))
199, 10, 13, 9, 11, 17, 18cnmpt12 22726 . . . 4 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)))
20 ssid 3939 . . . . . . 7 ℂ ⊆ ℂ
215toponrestid 21978 . . . . . . . 8 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
224, 15, 21cncfcn 23979 . . . . . . 7 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)))
236, 20, 22mp2an 688 . . . . . 6 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))
2423eqcomi 2747 . . . . 5 (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ)
2524a1i 11 . . . 4 (𝜑 → (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ))
2619, 25eleqtrd 2841 . . 3 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
27 rescncf 23966 . . . 4 (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) ∈ (𝐷cn→ℂ)))
2827imp 406 . . 3 ((𝐷 ⊆ (ℂ ∖ (-∞(,]0)) ∧ (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) ∈ (𝐷cn→ℂ))
291, 26, 28syl2anc 583 . 2 (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) ∈ (𝐷cn→ℂ))
303, 29eqeltrrd 2840 1 (𝜑 → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  wss 3883  cmpt 5153  cres 5582  cfv 6418  (class class class)co 7255  cmpo 7257  cc 10800  0cc0 10802  -∞cmnf 10938  (,]cioc 13009  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  cnccncf 23945  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  logdivsqrle  32530
  Copyright terms: Public domain W3C validator