| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cxpcncf1 | Structured version Visualization version GIF version | ||
| Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 26679. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| cxpcncf1.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpcncf1.d | ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) |
| Ref | Expression |
|---|---|
| cxpcncf1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpcncf1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) | |
| 2 | resmpt 5986 | . . 3 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 5 | 4 | cnfldtopon 24695 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 6 | difss 4086 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
| 7 | resttopon 23074 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) |
| 10 | 9 | cnmptid 23574 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))))) |
| 11 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 12 | cxpcncf1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 13 | 9, 11, 12 | cnmptc 23575 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
| 15 | eqid 2731 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) | |
| 16 | 14, 4, 15 | cxpcn 26679 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 18 | oveq12 7355 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐴) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐𝐴)) | |
| 19 | 9, 10, 13, 9, 11, 17, 18 | cnmpt12 23580 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
| 20 | ssid 3957 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
| 21 | 5 | toponrestid 22834 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 22 | 4, 15, 21 | cncfcn 24828 | . . . . . . 7 ⊢ (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
| 23 | 6, 20, 22 | mp2an 692 | . . . . . 6 ⊢ ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) |
| 24 | 23 | eqcomi 2740 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ) |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
| 26 | 19, 25 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
| 27 | rescncf 24815 | . . . 4 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ))) | |
| 28 | 27 | imp 406 | . . 3 ⊢ ((𝐷 ⊆ (ℂ ∖ (-∞(,]0)) ∧ (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
| 29 | 1, 26, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
| 30 | 3, 29 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 ↦ cmpt 5172 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℂcc 11001 0cc0 11003 -∞cmnf 11141 (,]cioc 13243 ↾t crest 17321 TopOpenctopn 17322 ℂfldccnfld 21289 TopOnctopon 22823 Cn ccn 23137 ×t ctx 23473 –cn→ccncf 24794 ↑𝑐ccxp 26489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-tan 15975 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 df-cxp 26491 |
| This theorem is referenced by: logdivsqrle 34658 |
| Copyright terms: Public domain | W3C validator |