![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cxpcncf1 | Structured version Visualization version GIF version |
Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 24926. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
cxpcncf1.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpcncf1.d | ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) |
Ref | Expression |
---|---|
cxpcncf1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxpcncf1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) | |
2 | resmpt 5699 | . . 3 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) |
4 | eqid 2778 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopon 22994 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
6 | difss 3960 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
7 | resttopon 21373 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) | |
8 | 5, 6, 7 | mp2an 682 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) |
10 | 9 | cnmptid 21873 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))))) |
11 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
12 | cxpcncf1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
13 | 9, 11, 12 | cnmptc 21874 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
14 | eqid 2778 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
15 | eqid 2778 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) | |
16 | 14, 4, 15 | cxpcn 24926 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
18 | oveq12 6931 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐴) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐𝐴)) | |
19 | 9, 10, 13, 9, 11, 17, 18 | cnmpt12 21879 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
20 | ssid 3842 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
21 | 5 | toponrestid 21133 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
22 | 4, 15, 21 | cncfcn 23120 | . . . . . . 7 ⊢ (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
23 | 6, 20, 22 | mp2an 682 | . . . . . 6 ⊢ ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) |
24 | 23 | eqcomi 2787 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ) |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
26 | 19, 25 | eleqtrd 2861 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
27 | rescncf 23108 | . . . 4 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ))) | |
28 | 27 | imp 397 | . . 3 ⊢ ((𝐷 ⊆ (ℂ ∖ (-∞(,]0)) ∧ (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
29 | 1, 26, 28 | syl2anc 579 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
30 | 3, 29 | eqeltrrd 2860 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 ⊆ wss 3792 ↦ cmpt 4965 ↾ cres 5357 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 ℂcc 10270 0cc0 10272 -∞cmnf 10409 (,]cioc 12488 ↾t crest 16467 TopOpenctopn 16468 ℂfldccnfld 20142 TopOnctopon 21122 Cn ccn 21436 ×t ctx 21772 –cn→ccncf 23087 ↑𝑐ccxp 24739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ioc 12492 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-mod 12988 df-seq 13120 df-exp 13179 df-fac 13379 df-bc 13408 df-hash 13436 df-shft 14214 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-limsup 14610 df-clim 14627 df-rlim 14628 df-sum 14825 df-ef 15200 df-sin 15202 df-cos 15203 df-tan 15204 df-pi 15205 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-fbas 20139 df-fg 20140 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-lp 21348 df-perf 21349 df-cn 21439 df-cnp 21440 df-haus 21527 df-cmp 21599 df-tx 21774 df-hmeo 21967 df-fil 22058 df-fm 22150 df-flim 22151 df-flf 22152 df-xms 22533 df-ms 22534 df-tms 22535 df-cncf 23089 df-limc 24067 df-dv 24068 df-log 24740 df-cxp 24741 |
This theorem is referenced by: logdivsqrle 31330 |
Copyright terms: Public domain | W3C validator |