Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cxpcncf1 Structured version   Visualization version   GIF version

Theorem cxpcncf1 34629
Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 26682. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
cxpcncf1.a (𝜑𝐴 ∈ ℂ)
cxpcncf1.d (𝜑𝐷 ⊆ (ℂ ∖ (-∞(,]0)))
Assertion
Ref Expression
cxpcncf1 (𝜑 → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥

Proof of Theorem cxpcncf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cxpcncf1.d . . 3 (𝜑𝐷 ⊆ (ℂ ∖ (-∞(,]0)))
2 resmpt 5990 . . 3 (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) = (𝑥𝐷 ↦ (𝑥𝑐𝐴)))
31, 2syl 17 . 2 (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) = (𝑥𝐷 ↦ (𝑥𝑐𝐴)))
4 eqid 2733 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54cnfldtopon 24698 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
6 difss 4085 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
7 resttopon 23077 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))))
85, 6, 7mp2an 692 . . . . . 6 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))
98a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))))
109cnmptid 23577 . . . . 5 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
115a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 cxpcncf1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
139, 11, 12cnmptc 23578 . . . . 5 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)))
14 eqid 2733 . . . . . . 7 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
15 eqid 2733 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
1614, 4, 15cxpcn 26682 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1716a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
18 oveq12 7361 . . . . 5 ((𝑦 = 𝑥𝑧 = 𝐴) → (𝑦𝑐𝑧) = (𝑥𝑐𝐴))
199, 10, 13, 9, 11, 17, 18cnmpt12 23583 . . . 4 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)))
20 ssid 3953 . . . . . . 7 ℂ ⊆ ℂ
215toponrestid 22837 . . . . . . . 8 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
224, 15, 21cncfcn 24831 . . . . . . 7 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)))
236, 20, 22mp2an 692 . . . . . 6 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))
2423eqcomi 2742 . . . . 5 (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ)
2524a1i 11 . . . 4 (𝜑 → (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ))
2619, 25eleqtrd 2835 . . 3 (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
27 rescncf 24818 . . . 4 (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) ∈ (𝐷cn→ℂ)))
2827imp 406 . . 3 ((𝐷 ⊆ (ℂ ∖ (-∞(,]0)) ∧ (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) ∈ (𝐷cn→ℂ))
291, 26, 28syl2anc 584 . 2 (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥𝑐𝐴)) ↾ 𝐷) ∈ (𝐷cn→ℂ))
303, 29eqeltrrd 2834 1 (𝜑 → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cdif 3895  wss 3898  cmpt 5174  cres 5621  cfv 6486  (class class class)co 7352  cmpo 7354  cc 11011  0cc0 11013  -∞cmnf 11151  (,]cioc 13248  t crest 17326  TopOpenctopn 17327  fldccnfld 21293  TopOnctopon 22826   Cn ccn 23140   ×t ctx 23476  cnccncf 24797  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-tan 15980  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  logdivsqrle  34684
  Copyright terms: Public domain W3C validator