Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsscn Structured version   Visualization version   GIF version

Theorem constrsscn 33764
Description: Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
Assertion
Ref Expression
constrsscn (𝜑 → (𝐶𝑁) ⊆ ℂ)
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥   𝐶,𝑏,𝑠,𝑥   𝐶,𝑐,𝑠,𝑥   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥   𝐶,𝑓,𝑠,𝑥   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑡,𝑟)   𝑁(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrsscn
Dummy variables 𝑛 𝑜 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrsscn.1 . 2 (𝜑𝑁 ∈ On)
2 fveq2 6831 . . . 4 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3963 . . 3 (𝑚 = ∅ → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘∅) ⊆ ℂ))
4 fveq2 6831 . . . 4 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
54sseq1d 3963 . . 3 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑛) ⊆ ℂ))
6 fveq2 6831 . . . 4 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
76sseq1d 3963 . . 3 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘suc 𝑛) ⊆ ℂ))
8 fveq2 6831 . . . 4 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
98sseq1d 3963 . . 3 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑁) ⊆ ℂ))
10 constr0.1 . . . . 5 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
1110constr0 33761 . . . 4 (𝐶‘∅) = {0, 1}
12 0cn 11114 . . . . 5 0 ∈ ℂ
13 ax-1cn 11074 . . . . 5 1 ∈ ℂ
14 prssi 4774 . . . . 5 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1512, 13, 14mp2an 692 . . . 4 {0, 1} ⊆ ℂ
1611, 15eqsstri 3978 . . 3 (𝐶‘∅) ⊆ ℂ
17 simpl 482 . . . . . . . . 9 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → 𝑛 ∈ On)
18 eqid 2733 . . . . . . . . 9 (𝐶𝑛) = (𝐶𝑛)
1910, 17, 18constrsuc 33762 . . . . . . . 8 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
2019biimpa 476 . . . . . . 7 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
2120simpld 494 . . . . . 6 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → 𝑥 ∈ ℂ)
2221ex 412 . . . . 5 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) → 𝑥 ∈ ℂ))
2322ssrdv 3937 . . . 4 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝐶‘suc 𝑛) ⊆ ℂ)
2423ex 412 . . 3 (𝑛 ∈ On → ((𝐶𝑛) ⊆ ℂ → (𝐶‘suc 𝑛) ⊆ ℂ))
25 vex 3442 . . . . . . 7 𝑚 ∈ V
2625a1i 11 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑚 ∈ V)
27 simpl 482 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → Lim 𝑚)
2810, 26, 27constrlim 33763 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) = 𝑜𝑚 (𝐶𝑜))
29 fveq2 6831 . . . . . . . 8 (𝑛 = 𝑜 → (𝐶𝑛) = (𝐶𝑜))
3029sseq1d 3963 . . . . . . 7 (𝑛 = 𝑜 → ((𝐶𝑛) ⊆ ℂ ↔ (𝐶𝑜) ⊆ ℂ))
31 simplr 768 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ)
32 simpr 484 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → 𝑜𝑚)
3330, 31, 32rspcdva 3575 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → (𝐶𝑜) ⊆ ℂ)
3433iunssd 5003 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑜𝑚 (𝐶𝑜) ⊆ ℂ)
3528, 34eqsstrd 3966 . . . 4 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) ⊆ ℂ)
3635ex 412 . . 3 (Lim 𝑚 → (∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ → (𝐶𝑚) ⊆ ℂ))
373, 5, 7, 9, 16, 24, 36tfinds 7799 . 2 (𝑁 ∈ On → (𝐶𝑁) ⊆ ℂ)
381, 37syl 17 1 (𝜑 → (𝐶𝑁) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  {crab 3397  Vcvv 3438  wss 3899  c0 4284  {cpr 4579   ciun 4943  cmpt 5176  Oncon0 6314  Lim wlim 6315  suc csuc 6316  cfv 6489  (class class class)co 7355  reccrdg 8337  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  cmin 11354  ccj 15013  cim 15015  abscabs 15151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-mulcl 11078  ax-i2m1 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  constrsslem  33765  constrconj  33769  constrfin  33770  constrelextdg2  33771  constrextdg2lem  33772  constrext2chnlem  33774  constrcn  33784
  Copyright terms: Public domain W3C validator