Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsscn Structured version   Visualization version   GIF version

Theorem constrsscn 33730
Description: Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
Assertion
Ref Expression
constrsscn (𝜑 → (𝐶𝑁) ⊆ ℂ)
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥   𝐶,𝑏,𝑠,𝑥   𝐶,𝑐,𝑠,𝑥   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥   𝐶,𝑓,𝑠,𝑥   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑡,𝑟)   𝑁(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrsscn
Dummy variables 𝑛 𝑜 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrsscn.1 . 2 (𝜑𝑁 ∈ On)
2 fveq2 6858 . . . 4 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3978 . . 3 (𝑚 = ∅ → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘∅) ⊆ ℂ))
4 fveq2 6858 . . . 4 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
54sseq1d 3978 . . 3 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑛) ⊆ ℂ))
6 fveq2 6858 . . . 4 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
76sseq1d 3978 . . 3 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘suc 𝑛) ⊆ ℂ))
8 fveq2 6858 . . . 4 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
98sseq1d 3978 . . 3 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑁) ⊆ ℂ))
10 constr0.1 . . . . 5 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
1110constr0 33727 . . . 4 (𝐶‘∅) = {0, 1}
12 0cn 11166 . . . . 5 0 ∈ ℂ
13 ax-1cn 11126 . . . . 5 1 ∈ ℂ
14 prssi 4785 . . . . 5 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1512, 13, 14mp2an 692 . . . 4 {0, 1} ⊆ ℂ
1611, 15eqsstri 3993 . . 3 (𝐶‘∅) ⊆ ℂ
17 simpl 482 . . . . . . . . 9 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → 𝑛 ∈ On)
18 eqid 2729 . . . . . . . . 9 (𝐶𝑛) = (𝐶𝑛)
1910, 17, 18constrsuc 33728 . . . . . . . 8 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
2019biimpa 476 . . . . . . 7 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
2120simpld 494 . . . . . 6 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → 𝑥 ∈ ℂ)
2221ex 412 . . . . 5 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) → 𝑥 ∈ ℂ))
2322ssrdv 3952 . . . 4 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝐶‘suc 𝑛) ⊆ ℂ)
2423ex 412 . . 3 (𝑛 ∈ On → ((𝐶𝑛) ⊆ ℂ → (𝐶‘suc 𝑛) ⊆ ℂ))
25 vex 3451 . . . . . . 7 𝑚 ∈ V
2625a1i 11 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑚 ∈ V)
27 simpl 482 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → Lim 𝑚)
2810, 26, 27constrlim 33729 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) = 𝑜𝑚 (𝐶𝑜))
29 fveq2 6858 . . . . . . . 8 (𝑛 = 𝑜 → (𝐶𝑛) = (𝐶𝑜))
3029sseq1d 3978 . . . . . . 7 (𝑛 = 𝑜 → ((𝐶𝑛) ⊆ ℂ ↔ (𝐶𝑜) ⊆ ℂ))
31 simplr 768 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ)
32 simpr 484 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → 𝑜𝑚)
3330, 31, 32rspcdva 3589 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → (𝐶𝑜) ⊆ ℂ)
3433iunssd 5014 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑜𝑚 (𝐶𝑜) ⊆ ℂ)
3528, 34eqsstrd 3981 . . . 4 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) ⊆ ℂ)
3635ex 412 . . 3 (Lim 𝑚 → (∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ → (𝐶𝑚) ⊆ ℂ))
373, 5, 7, 9, 16, 24, 36tfinds 7836 . 2 (𝑁 ∈ On → (𝐶𝑁) ⊆ ℂ)
381, 37syl 17 1 (𝜑 → (𝐶𝑁) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  {cpr 4591   ciun 4955  cmpt 5188  Oncon0 6332  Lim wlim 6333  suc csuc 6334  cfv 6511  (class class class)co 7387  reccrdg 8377  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  ccj 15062  cim 15064  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  constrsslem  33731  constrconj  33735  constrfin  33736  constrelextdg2  33737  constrextdg2lem  33738  constrext2chnlem  33740  constrcn  33750
  Copyright terms: Public domain W3C validator