Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsscn Structured version   Visualization version   GIF version

Theorem constrsscn 33609
Description: Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
Assertion
Ref Expression
constrsscn (𝜑 → (𝐶𝑁) ⊆ ℂ)
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥   𝐶,𝑏,𝑠,𝑥   𝐶,𝑐,𝑠,𝑥   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥   𝐶,𝑓,𝑠,𝑥   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑡,𝑟)   𝑁(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrsscn
Dummy variables 𝑛 𝑜 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrsscn.1 . 2 (𝜑𝑁 ∈ On)
2 fveq2 6890 . . . 4 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 4010 . . 3 (𝑚 = ∅ → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘∅) ⊆ ℂ))
4 fveq2 6890 . . . 4 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
54sseq1d 4010 . . 3 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑛) ⊆ ℂ))
6 fveq2 6890 . . . 4 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
76sseq1d 4010 . . 3 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘suc 𝑛) ⊆ ℂ))
8 fveq2 6890 . . . 4 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
98sseq1d 4010 . . 3 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑁) ⊆ ℂ))
10 constr0.1 . . . . 5 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
1110constr0 33606 . . . 4 (𝐶‘∅) = {0, 1}
12 0cn 11244 . . . . 5 0 ∈ ℂ
13 ax-1cn 11204 . . . . 5 1 ∈ ℂ
14 prssi 4820 . . . . 5 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1512, 13, 14mp2an 690 . . . 4 {0, 1} ⊆ ℂ
1611, 15eqsstri 4013 . . 3 (𝐶‘∅) ⊆ ℂ
17 simpl 481 . . . . . . . . 9 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → 𝑛 ∈ On)
18 eqid 2726 . . . . . . . . 9 (𝐶𝑛) = (𝐶𝑛)
1910, 17, 18constrsuc 33607 . . . . . . . 8 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
2019biimpa 475 . . . . . . 7 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
2120simpld 493 . . . . . 6 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → 𝑥 ∈ ℂ)
2221ex 411 . . . . 5 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) → 𝑥 ∈ ℂ))
2322ssrdv 3984 . . . 4 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝐶‘suc 𝑛) ⊆ ℂ)
2423ex 411 . . 3 (𝑛 ∈ On → ((𝐶𝑛) ⊆ ℂ → (𝐶‘suc 𝑛) ⊆ ℂ))
25 vex 3466 . . . . . . 7 𝑚 ∈ V
2625a1i 11 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑚 ∈ V)
27 simpl 481 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → Lim 𝑚)
2810, 26, 27constrlim 33608 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) = 𝑜𝑚 (𝐶𝑜))
29 fveq2 6890 . . . . . . . 8 (𝑛 = 𝑜 → (𝐶𝑛) = (𝐶𝑜))
3029sseq1d 4010 . . . . . . 7 (𝑛 = 𝑜 → ((𝐶𝑛) ⊆ ℂ ↔ (𝐶𝑜) ⊆ ℂ))
31 simplr 767 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ)
32 simpr 483 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → 𝑜𝑚)
3330, 31, 32rspcdva 3608 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → (𝐶𝑜) ⊆ ℂ)
3433iunssd 5050 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑜𝑚 (𝐶𝑜) ⊆ ℂ)
3528, 34eqsstrd 4017 . . . 4 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) ⊆ ℂ)
3635ex 411 . . 3 (Lim 𝑚 → (∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ → (𝐶𝑚) ⊆ ℂ))
373, 5, 7, 9, 16, 24, 36tfinds 7859 . 2 (𝑁 ∈ On → (𝐶𝑁) ⊆ ℂ)
381, 37syl 17 1 (𝜑 → (𝐶𝑁) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3o 1083  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3946  c0 4322  {cpr 4625   ciun 4993  cmpt 5226  Oncon0 6365  Lim wlim 6366  suc csuc 6367  cfv 6543  (class class class)co 7413  reccrdg 8428  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  cmin 11482  ccj 15093  cim 15095  abscabs 15231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-mulcl 11208  ax-i2m1 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by:  constrsslem  33610  constrconj  33614  constrfin  33615  constrelextdg2  33616
  Copyright terms: Public domain W3C validator