Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsscn Structured version   Visualization version   GIF version

Theorem constrsscn 33743
Description: Closure of the constructible points in the complex numbers. (Contributed by Thierry Arnoux, 25-Jun-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
Assertion
Ref Expression
constrsscn (𝜑 → (𝐶𝑁) ⊆ ℂ)
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥   𝐶,𝑏,𝑠,𝑥   𝐶,𝑐,𝑠,𝑥   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥   𝐶,𝑓,𝑠,𝑥   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑡,𝑟)   𝑁(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrsscn
Dummy variables 𝑛 𝑜 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrsscn.1 . 2 (𝜑𝑁 ∈ On)
2 fveq2 6817 . . . 4 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3964 . . 3 (𝑚 = ∅ → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘∅) ⊆ ℂ))
4 fveq2 6817 . . . 4 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
54sseq1d 3964 . . 3 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑛) ⊆ ℂ))
6 fveq2 6817 . . . 4 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
76sseq1d 3964 . . 3 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶‘suc 𝑛) ⊆ ℂ))
8 fveq2 6817 . . . 4 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
98sseq1d 3964 . . 3 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ ℂ ↔ (𝐶𝑁) ⊆ ℂ))
10 constr0.1 . . . . 5 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
1110constr0 33740 . . . 4 (𝐶‘∅) = {0, 1}
12 0cn 11096 . . . . 5 0 ∈ ℂ
13 ax-1cn 11056 . . . . 5 1 ∈ ℂ
14 prssi 4771 . . . . 5 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1512, 13, 14mp2an 692 . . . 4 {0, 1} ⊆ ℂ
1611, 15eqsstri 3979 . . 3 (𝐶‘∅) ⊆ ℂ
17 simpl 482 . . . . . . . . 9 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → 𝑛 ∈ On)
18 eqid 2730 . . . . . . . . 9 (𝐶𝑛) = (𝐶𝑛)
1910, 17, 18constrsuc 33741 . . . . . . . 8 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
2019biimpa 476 . . . . . . 7 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
2120simpld 494 . . . . . 6 (((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) ∧ 𝑥 ∈ (𝐶‘suc 𝑛)) → 𝑥 ∈ ℂ)
2221ex 412 . . . . 5 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝑥 ∈ (𝐶‘suc 𝑛) → 𝑥 ∈ ℂ))
2322ssrdv 3938 . . . 4 ((𝑛 ∈ On ∧ (𝐶𝑛) ⊆ ℂ) → (𝐶‘suc 𝑛) ⊆ ℂ)
2423ex 412 . . 3 (𝑛 ∈ On → ((𝐶𝑛) ⊆ ℂ → (𝐶‘suc 𝑛) ⊆ ℂ))
25 vex 3438 . . . . . . 7 𝑚 ∈ V
2625a1i 11 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑚 ∈ V)
27 simpl 482 . . . . . 6 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → Lim 𝑚)
2810, 26, 27constrlim 33742 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) = 𝑜𝑚 (𝐶𝑜))
29 fveq2 6817 . . . . . . . 8 (𝑛 = 𝑜 → (𝐶𝑛) = (𝐶𝑜))
3029sseq1d 3964 . . . . . . 7 (𝑛 = 𝑜 → ((𝐶𝑛) ⊆ ℂ ↔ (𝐶𝑜) ⊆ ℂ))
31 simplr 768 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ)
32 simpr 484 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → 𝑜𝑚)
3330, 31, 32rspcdva 3576 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) ∧ 𝑜𝑚) → (𝐶𝑜) ⊆ ℂ)
3433iunssd 4997 . . . . 5 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → 𝑜𝑚 (𝐶𝑜) ⊆ ℂ)
3528, 34eqsstrd 3967 . . . 4 ((Lim 𝑚 ∧ ∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ) → (𝐶𝑚) ⊆ ℂ)
3635ex 412 . . 3 (Lim 𝑚 → (∀𝑛𝑚 (𝐶𝑛) ⊆ ℂ → (𝐶𝑚) ⊆ ℂ))
373, 5, 7, 9, 16, 24, 36tfinds 7785 . 2 (𝑁 ∈ On → (𝐶𝑁) ⊆ ℂ)
381, 37syl 17 1 (𝜑 → (𝐶𝑁) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  wss 3900  c0 4281  {cpr 4576   ciun 4939  cmpt 5170  Oncon0 6302  Lim wlim 6303  suc csuc 6304  cfv 6477  (class class class)co 7341  reccrdg 8323  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  cmin 11336  ccj 14995  cim 14997  abscabs 15133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-mulcl 11060  ax-i2m1 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324
This theorem is referenced by:  constrsslem  33744  constrconj  33748  constrfin  33749  constrelextdg2  33750  constrextdg2lem  33751  constrext2chnlem  33753  constrcn  33763
  Copyright terms: Public domain W3C validator