Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsslem Structured version   Visualization version   GIF version

Theorem constrsslem 33724
Description: Lemma for constrss 33726. This lemma requires the additional condition that 0 is a constructible number; that condition is removed in constrss 33726. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
constrsslem.1 (𝜑 → 0 ∈ (𝐶𝑁))
Assertion
Ref Expression
constrsslem (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥,𝑏,𝑐   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥,𝑓   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥,𝐶   𝑎,𝑏,𝑐,𝑒,𝑓,𝑡,𝑁   𝑁,𝑑,𝑠,𝑥   𝜑,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐶(𝑟)   𝑁(𝑟)

Proof of Theorem constrsslem
StepHypRef Expression
1 constr0.1 . . . . . 6 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
2 constrsscn.1 . . . . . 6 (𝜑𝑁 ∈ On)
31, 2constrsscn 33723 . . . . 5 (𝜑 → (𝐶𝑁) ⊆ ℂ)
43sselda 3943 . . . 4 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 ∈ ℂ)
5 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 ∈ (𝐶𝑁))
6 id 22 . . . . . . . . . . . . 13 (𝑎 = 𝑥𝑎 = 𝑥)
7 oveq2 7377 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (𝑏𝑎) = (𝑏𝑥))
87oveq2d 7385 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑡 · (𝑏𝑎)) = (𝑡 · (𝑏𝑥)))
96, 8oveq12d 7387 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑎 + (𝑡 · (𝑏𝑎))) = (𝑥 + (𝑡 · (𝑏𝑥))))
109eqeq2d 2740 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ↔ 𝑥 = (𝑥 + (𝑡 · (𝑏𝑥)))))
1110anbi1d 631 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1211rexbidv 3157 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
13122rexbidv 3200 . . . . . . . 8 (𝑎 = 𝑥 → (∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
14132rexbidv 3200 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1514adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑎 = 𝑥) → (∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
16 constrsslem.1 . . . . . . . 8 (𝜑 → 0 ∈ (𝐶𝑁))
1716adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶𝑁)) → 0 ∈ (𝐶𝑁))
18 oveq1 7376 . . . . . . . . . . . . . 14 (𝑏 = 0 → (𝑏𝑥) = (0 − 𝑥))
1918oveq2d 7385 . . . . . . . . . . . . 13 (𝑏 = 0 → (𝑡 · (𝑏𝑥)) = (𝑡 · (0 − 𝑥)))
2019oveq2d 7385 . . . . . . . . . . . 12 (𝑏 = 0 → (𝑥 + (𝑡 · (𝑏𝑥))) = (𝑥 + (𝑡 · (0 − 𝑥))))
2120eqeq2d 2740 . . . . . . . . . . 11 (𝑏 = 0 → (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ↔ 𝑥 = (𝑥 + (𝑡 · (0 − 𝑥)))))
2221anbi1d 631 . . . . . . . . . 10 (𝑏 = 0 → ((𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
23222rexbidv 3200 . . . . . . . . 9 (𝑏 = 0 → (∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
24232rexbidv 3200 . . . . . . . 8 (𝑏 = 0 → (∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
2524adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑏 = 0) → (∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
26 oveq2 7377 . . . . . . . . . . . . . 14 (𝑐 = 0 → (𝑥𝑐) = (𝑥 − 0))
2726fveq2d 6844 . . . . . . . . . . . . 13 (𝑐 = 0 → (abs‘(𝑥𝑐)) = (abs‘(𝑥 − 0)))
2827eqeq1d 2731 . . . . . . . . . . . 12 (𝑐 = 0 → ((abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))))
2928anbi2d 630 . . . . . . . . . . 11 (𝑐 = 0 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
3029rexbidv 3157 . . . . . . . . . 10 (𝑐 = 0 → (∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
31302rexbidv 3200 . . . . . . . . 9 (𝑐 = 0 → (∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
3231adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑐 = 0) → (∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
33 oveq1 7376 . . . . . . . . . . . . . 14 (𝑒 = 𝑥 → (𝑒𝑓) = (𝑥𝑓))
3433fveq2d 6844 . . . . . . . . . . . . 13 (𝑒 = 𝑥 → (abs‘(𝑒𝑓)) = (abs‘(𝑥𝑓)))
3534eqeq2d 2740 . . . . . . . . . . . 12 (𝑒 = 𝑥 → ((abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))))
3635anbi2d 630 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)))))
37362rexbidv 3200 . . . . . . . . . 10 (𝑒 = 𝑥 → (∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)))))
3837adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑒 = 𝑥) → (∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)))))
39 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑓 = 0 → (𝑥𝑓) = (𝑥 − 0))
4039fveq2d 6844 . . . . . . . . . . . . . 14 (𝑓 = 0 → (abs‘(𝑥𝑓)) = (abs‘(𝑥 − 0)))
4140eqeq2d 2740 . . . . . . . . . . . . 13 (𝑓 = 0 → ((abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)) ↔ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))))
4241anbi2d 630 . . . . . . . . . . . 12 (𝑓 = 0 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
4342rexbidv 3157 . . . . . . . . . . 11 (𝑓 = 0 → (∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
4443adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑓 = 0) → (∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
45 0red 11153 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶𝑁)) → 0 ∈ ℝ)
46 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡 · (0 − 𝑥)) = (0 · (0 − 𝑥)))
4746oveq2d 7385 . . . . . . . . . . . . . 14 (𝑡 = 0 → (𝑥 + (𝑡 · (0 − 𝑥))) = (𝑥 + (0 · (0 − 𝑥))))
4847eqeq2d 2740 . . . . . . . . . . . . 13 (𝑡 = 0 → (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ↔ 𝑥 = (𝑥 + (0 · (0 − 𝑥)))))
4948anbi1d 631 . . . . . . . . . . . 12 (𝑡 = 0 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))) ↔ (𝑥 = (𝑥 + (0 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
5049adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑡 = 0) → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))) ↔ (𝑥 = (𝑥 + (0 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
51 0cnd 11143 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶𝑁)) → 0 ∈ ℂ)
5251, 4subcld 11509 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶𝑁)) → (0 − 𝑥) ∈ ℂ)
5352mul02d 11348 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶𝑁)) → (0 · (0 − 𝑥)) = 0)
5453oveq2d 7385 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 + (0 · (0 − 𝑥))) = (𝑥 + 0))
554addridd 11350 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 + 0) = 𝑥)
5654, 55eqtr2d 2765 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 = (𝑥 + (0 · (0 − 𝑥))))
57 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶𝑁)) → (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))
5856, 57jca 511 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 = (𝑥 + (0 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))))
5945, 50, 58rspcedvd 3587 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))))
6017, 44, 59rspcedvd 3587 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))))
615, 38, 60rspcedvd 3587 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))))
6217, 32, 61rspcedvd 3587 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
6317, 25, 62rspcedvd 3587 . . . . . 6 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
645, 15, 63rspcedvd 3587 . . . . 5 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
65643mix2d 1338 . . . 4 ((𝜑𝑥 ∈ (𝐶𝑁)) → (∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
66 eqid 2729 . . . . . 6 (𝐶𝑁) = (𝐶𝑁)
671, 2, 66constrsuc 33721 . . . . 5 (𝜑 → (𝑥 ∈ (𝐶‘suc 𝑁) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
6867adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 ∈ (𝐶‘suc 𝑁) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
694, 65, 68mpbir2and 713 . . 3 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 ∈ (𝐶‘suc 𝑁))
7069ex 412 . 2 (𝜑 → (𝑥 ∈ (𝐶𝑁) → 𝑥 ∈ (𝐶‘suc 𝑁)))
7170ssrdv 3949 1 (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  {cpr 4587  cmpt 5183  Oncon0 6320  suc csuc 6322  cfv 6499  (class class class)co 7369  reccrdg 8354  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  ccj 15038  cim 15040  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383
This theorem is referenced by:  constr01  33725  constrss  33726
  Copyright terms: Public domain W3C validator