Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsslem Structured version   Visualization version   GIF version

Theorem constrsslem 33737
Description: Lemma for constrss 33739. This lemma requires the additional condition that 0 is a constructible number; that condition is removed in constrss 33739. (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
constrsslem.1 (𝜑 → 0 ∈ (𝐶𝑁))
Assertion
Ref Expression
constrsslem (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥,𝑏,𝑐   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥,𝑓   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥,𝐶   𝑎,𝑏,𝑐,𝑒,𝑓,𝑡,𝑁   𝑁,𝑑,𝑠,𝑥   𝜑,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐶(𝑟)   𝑁(𝑟)

Proof of Theorem constrsslem
StepHypRef Expression
1 constr0.1 . . . . . 6 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
2 constrsscn.1 . . . . . 6 (𝜑𝑁 ∈ On)
31, 2constrsscn 33736 . . . . 5 (𝜑 → (𝐶𝑁) ⊆ ℂ)
43sselda 3948 . . . 4 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 ∈ ℂ)
5 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 ∈ (𝐶𝑁))
6 id 22 . . . . . . . . . . . . 13 (𝑎 = 𝑥𝑎 = 𝑥)
7 oveq2 7397 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (𝑏𝑎) = (𝑏𝑥))
87oveq2d 7405 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑡 · (𝑏𝑎)) = (𝑡 · (𝑏𝑥)))
96, 8oveq12d 7407 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑎 + (𝑡 · (𝑏𝑎))) = (𝑥 + (𝑡 · (𝑏𝑥))))
109eqeq2d 2741 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ↔ 𝑥 = (𝑥 + (𝑡 · (𝑏𝑥)))))
1110anbi1d 631 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1211rexbidv 3158 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
13122rexbidv 3203 . . . . . . . 8 (𝑎 = 𝑥 → (∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
14132rexbidv 3203 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1514adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑎 = 𝑥) → (∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
16 constrsslem.1 . . . . . . . 8 (𝜑 → 0 ∈ (𝐶𝑁))
1716adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶𝑁)) → 0 ∈ (𝐶𝑁))
18 oveq1 7396 . . . . . . . . . . . . . 14 (𝑏 = 0 → (𝑏𝑥) = (0 − 𝑥))
1918oveq2d 7405 . . . . . . . . . . . . 13 (𝑏 = 0 → (𝑡 · (𝑏𝑥)) = (𝑡 · (0 − 𝑥)))
2019oveq2d 7405 . . . . . . . . . . . 12 (𝑏 = 0 → (𝑥 + (𝑡 · (𝑏𝑥))) = (𝑥 + (𝑡 · (0 − 𝑥))))
2120eqeq2d 2741 . . . . . . . . . . 11 (𝑏 = 0 → (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ↔ 𝑥 = (𝑥 + (𝑡 · (0 − 𝑥)))))
2221anbi1d 631 . . . . . . . . . 10 (𝑏 = 0 → ((𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
23222rexbidv 3203 . . . . . . . . 9 (𝑏 = 0 → (∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
24232rexbidv 3203 . . . . . . . 8 (𝑏 = 0 → (∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
2524adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑏 = 0) → (∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
26 oveq2 7397 . . . . . . . . . . . . . 14 (𝑐 = 0 → (𝑥𝑐) = (𝑥 − 0))
2726fveq2d 6864 . . . . . . . . . . . . 13 (𝑐 = 0 → (abs‘(𝑥𝑐)) = (abs‘(𝑥 − 0)))
2827eqeq1d 2732 . . . . . . . . . . . 12 (𝑐 = 0 → ((abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))))
2928anbi2d 630 . . . . . . . . . . 11 (𝑐 = 0 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
3029rexbidv 3158 . . . . . . . . . 10 (𝑐 = 0 → (∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
31302rexbidv 3203 . . . . . . . . 9 (𝑐 = 0 → (∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
3231adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑐 = 0) → (∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)))))
33 oveq1 7396 . . . . . . . . . . . . . 14 (𝑒 = 𝑥 → (𝑒𝑓) = (𝑥𝑓))
3433fveq2d 6864 . . . . . . . . . . . . 13 (𝑒 = 𝑥 → (abs‘(𝑒𝑓)) = (abs‘(𝑥𝑓)))
3534eqeq2d 2741 . . . . . . . . . . . 12 (𝑒 = 𝑥 → ((abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))))
3635anbi2d 630 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)))))
37362rexbidv 3203 . . . . . . . . . 10 (𝑒 = 𝑥 → (∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)))))
3837adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑒 = 𝑥) → (∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)))))
39 oveq2 7397 . . . . . . . . . . . . . . 15 (𝑓 = 0 → (𝑥𝑓) = (𝑥 − 0))
4039fveq2d 6864 . . . . . . . . . . . . . 14 (𝑓 = 0 → (abs‘(𝑥𝑓)) = (abs‘(𝑥 − 0)))
4140eqeq2d 2741 . . . . . . . . . . . . 13 (𝑓 = 0 → ((abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓)) ↔ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))))
4241anbi2d 630 . . . . . . . . . . . 12 (𝑓 = 0 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))) ↔ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
4342rexbidv 3158 . . . . . . . . . . 11 (𝑓 = 0 → (∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
4443adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑓 = 0) → (∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
45 0red 11183 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶𝑁)) → 0 ∈ ℝ)
46 oveq1 7396 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡 · (0 − 𝑥)) = (0 · (0 − 𝑥)))
4746oveq2d 7405 . . . . . . . . . . . . . 14 (𝑡 = 0 → (𝑥 + (𝑡 · (0 − 𝑥))) = (𝑥 + (0 · (0 − 𝑥))))
4847eqeq2d 2741 . . . . . . . . . . . . 13 (𝑡 = 0 → (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ↔ 𝑥 = (𝑥 + (0 · (0 − 𝑥)))))
4948anbi1d 631 . . . . . . . . . . . 12 (𝑡 = 0 → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))) ↔ (𝑥 = (𝑥 + (0 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
5049adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐶𝑁)) ∧ 𝑡 = 0) → ((𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))) ↔ (𝑥 = (𝑥 + (0 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))))
51 0cnd 11173 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶𝑁)) → 0 ∈ ℂ)
5251, 4subcld 11539 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶𝑁)) → (0 − 𝑥) ∈ ℂ)
5352mul02d 11378 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶𝑁)) → (0 · (0 − 𝑥)) = 0)
5453oveq2d 7405 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 + (0 · (0 − 𝑥))) = (𝑥 + 0))
554addridd 11380 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 + 0) = 𝑥)
5654, 55eqtr2d 2766 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 = (𝑥 + (0 · (0 − 𝑥))))
57 eqidd 2731 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐶𝑁)) → (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0)))
5856, 57jca 511 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 = (𝑥 + (0 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))))
5945, 50, 58rspcedvd 3593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥 − 0))))
6017, 44, 59rspcedvd 3593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑥𝑓))))
615, 38, 60rspcedvd 3593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥 − 0)) = (abs‘(𝑒𝑓))))
6217, 32, 61rspcedvd 3593 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (0 − 𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
6317, 25, 62rspcedvd 3593 . . . . . 6 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑥 + (𝑡 · (𝑏𝑥))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
645, 15, 63rspcedvd 3593 . . . . 5 ((𝜑𝑥 ∈ (𝐶𝑁)) → ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
65643mix2d 1338 . . . 4 ((𝜑𝑥 ∈ (𝐶𝑁)) → (∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
66 eqid 2730 . . . . . 6 (𝐶𝑁) = (𝐶𝑁)
671, 2, 66constrsuc 33734 . . . . 5 (𝜑 → (𝑥 ∈ (𝐶‘suc 𝑁) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
6867adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐶𝑁)) → (𝑥 ∈ (𝐶‘suc 𝑁) ↔ (𝑥 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑁)∃𝑏 ∈ (𝐶𝑁)∃𝑐 ∈ (𝐶𝑁)∃𝑑 ∈ (𝐶𝑁)∃𝑒 ∈ (𝐶𝑁)∃𝑓 ∈ (𝐶𝑁)(𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))))
694, 65, 68mpbir2and 713 . . 3 ((𝜑𝑥 ∈ (𝐶𝑁)) → 𝑥 ∈ (𝐶‘suc 𝑁))
7069ex 412 . 2 (𝜑 → (𝑥 ∈ (𝐶𝑁) → 𝑥 ∈ (𝐶‘suc 𝑁)))
7170ssrdv 3954 1 (𝜑 → (𝐶𝑁) ⊆ (𝐶‘suc 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  wss 3916  {cpr 4593  cmpt 5190  Oncon0 6334  suc csuc 6336  cfv 6513  (class class class)co 7389  reccrdg 8379  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  ccj 15068  cim 15070  abscabs 15206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219  df-sub 11413
This theorem is referenced by:  constr01  33738  constrss  33739
  Copyright terms: Public domain W3C validator