Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmlno0i | Structured version Visualization version GIF version |
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmlno0.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmlno0.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
nmlno0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
nmlno0i.u | ⊢ 𝑈 ∈ NrmCVec |
nmlno0i.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmlno0i | ⊢ (𝑇 ∈ 𝐿 → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6672 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, 𝑍) → ((𝑁‘𝑇) = 0 ↔ (𝑁‘if(𝑇 ∈ 𝐿, 𝑇, 𝑍)) = 0)) | |
2 | eqeq1 2762 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, 𝑍) → (𝑇 = 𝑍 ↔ if(𝑇 ∈ 𝐿, 𝑇, 𝑍) = 𝑍)) | |
3 | 1, 2 | bibi12d 349 | . 2 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, 𝑍) → (((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍) ↔ ((𝑁‘if(𝑇 ∈ 𝐿, 𝑇, 𝑍)) = 0 ↔ if(𝑇 ∈ 𝐿, 𝑇, 𝑍) = 𝑍))) |
4 | nmlno0.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
5 | nmlno0.0 | . . 3 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
6 | nmlno0.7 | . . 3 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
7 | nmlno0i.u | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
8 | nmlno0i.w | . . 3 ⊢ 𝑊 ∈ NrmCVec | |
9 | 5, 6 | 0lno 28686 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 ∈ 𝐿) |
10 | 7, 8, 9 | mp2an 691 | . . . 4 ⊢ 𝑍 ∈ 𝐿 |
11 | 10 | elimel 4492 | . . 3 ⊢ if(𝑇 ∈ 𝐿, 𝑇, 𝑍) ∈ 𝐿 |
12 | eqid 2758 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
13 | eqid 2758 | . . 3 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
14 | eqid 2758 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
15 | eqid 2758 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
16 | eqid 2758 | . . 3 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
17 | eqid 2758 | . . 3 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
18 | eqid 2758 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
19 | eqid 2758 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
20 | 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19 | nmlno0lem 28689 | . 2 ⊢ ((𝑁‘if(𝑇 ∈ 𝐿, 𝑇, 𝑍)) = 0 ↔ if(𝑇 ∈ 𝐿, 𝑇, 𝑍) = 𝑍) |
21 | 3, 20 | dedth 4481 | 1 ⊢ (𝑇 ∈ 𝐿 → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ifcif 4423 ‘cfv 6340 (class class class)co 7156 0cc0 10588 NrmCVeccnv 28480 BaseSetcba 28482 ·𝑠OLD cns 28483 0veccn0v 28484 normCVcnmcv 28486 LnOp clno 28636 normOpOLD cnmoo 28637 0op c0o 28639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-grpo 28389 df-gid 28390 df-ginv 28391 df-ablo 28441 df-vc 28455 df-nv 28488 df-va 28491 df-ba 28492 df-sm 28493 df-0v 28494 df-nmcv 28496 df-lno 28640 df-nmoo 28641 df-0o 28643 |
This theorem is referenced by: nmlno0 28691 nmlnop0iHIL 29892 |
Copyright terms: Public domain | W3C validator |